DOI QR코드

DOI QR Code

Measurement of Spatial Dose Distribution for evaluation operator dose during Neuro-interventional Procedures

두경부 질환의 인터벤션 시술 시 시술자의 피폭선량평가를 위한 공간선량측정에 관한 연구

  • Han, Su-Chul (Division of Medical Radiation Equipment, Korea Institute of Radiological and Medical Sciences) ;
  • Hong, Dong-Hee (Dept. of Radiology Science, Far East University)
  • 한수철 (한국원자력의학원 방사선기기부) ;
  • 홍동희 (극동대학교 방사선학과)
  • Received : 2016.08.04
  • Accepted : 2016.09.12
  • Published : 2016.09.30

Abstract

The spatial dose distribution was measured with ionization chamber as preliminary study to evaluate operator dose and to study dose reduction during neuro-interventional procedures. The zone of operators was divided into four area (45, 135, 225, and 315 degree).We supposed that operator exist on the four area and indicated location of critical organs(eyes, breast, gonad). The spatial doses were measured depending on distance( 80, 100, 120, and 140 cm) and location of critical organs. The spatial doses of area of 225 degree were 114.5 mR/h (eyes location), 143.1 mR/h (breast location) and 147 mR/h (gonad location) in 80 cm. When changed location of x-ray generator, spatial dose increased in $18.1{\pm}10.5%$, averagely. We certified spatial dose in the operator locations, Using the results of this study, It is feasible to protect operator from radiation in neuro-interventional procedures.

두경부 질환의 인터벤션 시술 시 시술자가 받는 피폭선량의 평가 및 감소연구를 위한 선행 연구로써, 이온 전리함을 이용하여 인터벤션 시술 시 시술자의 위치하는 공간선량 분포를 측정하였다. Bi-plane 인터벤션 시술 장비를 대상으로 4개 구역(45, 135, 225 그리고 315도)으로 나누어 가상의 시술자가 있다는 가정아래에 시술자의 결정장기위치에서 거리(80, 100, 120, 그리고 140 cm)에 따라 조사선량을 측정하였으며, 방사선발생장치의 위치를 변화시켜 선량변화를 분석하였다. 시술자의 대부분이 위치하는 225도의 구역의 조사선량은 가장 가까운 거리인 80 cm에서 시술자 눈의 높이에서 114.5 mR/h, 가슴의 높이는 143.1 mR/h, 그리고 생식기위치는 147 mR/h이었다. 그리고 방사선 발생장치의 위치를 시술자 가까이로 변화시켰을 경우, 평균적으로 $18.1{\pm}10.5%$의 선량이 증가하였다. 본 연구에서 인터벤션 시술 동안 시술자가 위치할 수 있는 곳의 공간선량분포를 확인하였으며, 본 연구 결과를 통하여 시술자의 방사선 방어에 대하여 구체적인 계획을 수립할 수 있을 것이라 사료된다.

Keywords

References

  1. Marshall NW, Noble J Faulkner K : Patient and staff dosimetry in neuroradiological procedure. The Brtitish Institute of Radiology. 68, 495-501, 1995
  2. Cirai-Bjelac O, Re Hani M, Minamoto A, et al: Radiation- induced eyes lens and risk of cataract in interventional cardi-logy. Cardio-logy.123, 168-171, 2012
  3. Mabuchi K, Hatch M, Little MP, Linet MS, Simon SL: Risk of thyroid cancer after adult radiation exposure time to re-assess ? Radia Res. 179, 254-256, 2013 https://doi.org/10.1667/RR3121.1
  4. Moritake T, Matsumaru Y, Takigawa T, et al: Dose measurement on both patient and operator during neurointerventional procedure using photoluminescence glass dosimeters. Am J Neuroradiol. 29, 1910-1917, 2008 https://doi.org/10.3174/ajnr.A1235
  5. Pesliden J: Patient and staff dose in interventional x-ray procedure in Sweden. Radiat. Prot. Dosimetry. 114, 150-157, 2005 https://doi.org/10.1093/rpd/nch539
  6. International Commission of Radioligcial protection: Avoidance of radiation injuries from medical interventional procedure.2001
  7. International Atomic Energy Agency : Patient dose optimization in fluoroscopically guided interventional procedures. 2010
  8. Korea Food Drung Administration: Evaluation of radiation exposure of interventional radiologist. 2005
  9. Korea Food Drug Administration: Research for safety guideline publication and anlysis on exposure dose for interventional radiological radiation worker. 2006
  10. Korea Food Drug Administration: study on the radiation exposure of the workers of the interventional radilogy. 2013
  11. Norbash A, Busick D and Marks M..P.: Techniques for reducing interventional neuroradiologic skin dose: tube position rotation and supplemental beam filtration. Am J Neuroradiol. 17, 41-49, 1996
  12. Shortt C.P. Malone L, Thornton J, Brennan P and Lee M. J. : Radiation protection to the eyes and thyroids during diagnostic cerebral angiography: a phantom study. J Med Imaging Radiat. Oncol., 52, 365-369, 2008 https://doi.org/10.1111/j.1440-1673.2008.01970.x
  13. Su chul Han and Soon Chan Kwon: Radiation dose and reduction to the critical organ with bishmuth shielding during endovascular coil embolisation for cerebral aneurysms. Radiat. Prot. Dosimetry. 156, 364-371, 2013 https://doi.org/10.1093/rpd/nct070
  14. Suzuki S, Furui S, Matsumaru Y, et al: patient skin dose during neuroembolization by multi-point measurement using a radiosensitive indicator. Am J Neuroradiol. 29, 1076-108, 2008 https://doi.org/10.3174/ajnr.A1045
  15. Sandborg M, Rossitti S and Pettersson H : Local skin and eye lens equivalent doses in interventional neuroradiology. Eur. Radiol, 20, 725-733, 2010 https://doi.org/10.1007/s00330-009-1598-9
  16. Jaco J. W, and Miller D. L: Measuring and monitoring radiation dose during fluoroscopically guided procedures. Tech. Vasc. Interv. Radiol., 13, 188-193, 2010 https://doi.org/10.1053/j.tvir.2010.03.009
  17. Delle canne S : Use of gafchromic XR type films for skin-dose measurement in interventional radiology: Validation of a dosimeric procedure on a sample of patients undergone interventional cardiology. Phys. Med. 22, 105-110, 2006 https://doi.org/10.1016/S1120-1797(06)80004-9