DOI QR코드

DOI QR Code

Evaluation of Dose According to the Volume and Respiratory Range during SBRT in Lung Cancer

폐암의 정위적 체부 방사선치료 시 체적 설정과 호흡주기에 따른 선량평가

  • Lee, Deuk-Hee (Dept. of Radiation Oncology, Busan Paik Hospital, Inje University) ;
  • Park, Eun-Tae (Dept. of Radiation Oncology, Busan Paik Hospital, Inje University) ;
  • Kim, Jung-Hoon (Dept. of Radiological Science, College of Health Sciences, Catholic University of Pusan) ;
  • Kang, Se-Seik (Dept. of Radiological Science, College of Health Sciences, Catholic University of Pusan)
  • 이득희 (인제대학교 부산백병원 방사선종양학과) ;
  • 박은태 (인제대학교 부산백병원 방사선종양학과) ;
  • 김정훈 (부산가톨릭대학교 보건과학대학 방사선학과) ;
  • 강세식 (부산가톨릭대학교 보건과학대학 방사선학과)
  • Received : 2016.06.01
  • Accepted : 2016.09.05
  • Published : 2016.09.30

Abstract

Stereotactic body radiotherapy is effective technic in radiotherapy for low stage lung cancer. But lung cancer is affected by respiratory so accurately concentrate high dose to the target is very difficult. In this study, evaluated the target volume according to how to take the image. And evaluated the dose by photoluminescence glass dosimeter according to how to contour the volume and respiratory range. As a result, evaluated the 4D CT volume was 10.4 cm3 which was closest value of real size target. And in dose case is internal target volume dose was 10.82, 16.88, 21.90 Gy when prescribed dose was 10, 15, 20 Gy and it was the highest dose. Respiratory gated radiotherapy dose was more higher than internal target volume. But it made little difference by respiratory range. Therefore, when moving cancer treatment, acquiring image by 4D CT, contouring internal target volume and respiratory gated radiotherapy technic would be the best way.

저병기 폐암은 정위적 체부 방사선치료 방식이 높은 효과를 나타내지만, 호흡에 의한 움직임으로 인해 정확한 선량의 조사가 쉽지 않다. 이에 본 연구는 움직이는 표적을 대상으로 영상획득 방식에 따른 체적을 분석하고, 체적 설정방식 및 호흡주기에 따른 선량을 유리선량계를 이용하여 평가하였다. 그 결과, 체적 획득의 경우 4D CT가 $10.4cm^3$로 실제 체적인 $12.3cm^3$에 가장 근접한 결과를 나타냈다. 선량평가에서는 ITV가 처방선량 10, 15, 20 Gy에서 각각 10.82, 16.88, 21.90 Gy로 가장 높은 값을 보였으며, RGRT가 좀 더 높은 값을 나타내었으나 호흡주기에 따른 결과는 유의한 차이를 나타내지 않았다. 따라서 움직이는 종양의 치료 시 4D CT를 이용하여 영상을 획득 후 ITV를 설정하여 RGRT방식으로 치료하는 것이 유리할 것으로 사료된다.

Keywords

References

  1. National Cancer Information Center(www.cancer.go.kr), 2014.
  2. Jae-Seung Lee, Jung-Nam Kim: Efficient Data Acquisition Technique for Clinical Application of Multileaf Collimator, Jounal of The Korea Contents Association, 8(11), 182-188, 2008
  3. Nagata Y, Takayama K, Matsuo Y, et al.: Clinical outcomes of a phase I/II study of 48 Gy of stereotactic body radiotherapy in 4 fractions for primary lung cancer using a stereotactic body frame, Int J Radiat Oncol Biol Phys, 1;63(5), 1427-1431, 2005 https://doi.org/10.1016/j.ijrobp.2005.05.034
  4. Jan Nymana, Karl-Axel Johanssonb, Ulla HultHna: Stereotactic hypofractionated radiotherapy for stage I non-small cell lung cancer-Mature results for medically inoperable patients, Lung Cancer, 51, 97-103, 2005
  5. Kestin L, Grills I, Guckenberger M, et al.: Dose-response relationship with clinical outcome for lung stereotactic body radiotherapy (SBRT) delivered via online image guidance, Radiotherapy and Oncology, 110(3), 499-504, 2014 https://doi.org/10.1016/j.radonc.2014.02.002
  6. ICRU. Prescribing, recording and reporting photon beam therapy Report 50, 1993. Bethesda. USA
  7. ICRU. Prescribing, recording and reporting photon beam therapy(supplement to ICRU report 50), report 62, 1999. Bethesda. USA
  8. Keall PJ, Mageras GS, Balter JM, et al.: The management of respiratory motion in radiation oncology report of AAPM Task Group 76, The International Jounal of Medical Physics and Practice, 33(10), 3874-3900, 2006.
  9. Seong Soon Jang, Gil Ja Huh, Suk Young Park, Po Song Yang, Eun Youn Cho: The impact of respiratory gating on lung dosimetry in stereotactic body radiotherapy for lung cancer, European Jounal of Medical physics, 30, 682-689, 2014
  10. Stephen B. Edge: Ajcc Cancer Staging Manual (Paperback), Springer Verlag, Berlin, 2009
  11. Langen KM, Jones DT: Organ motion and its management, International Jounal of Radiation Oncology.Biology.Physics, 1;50(1), 265-78, 2001 https://doi.org/10.1016/S0360-3016(01)01453-5
  12. Jun Young Na, Tae Young Kang, Geum Mun Baek, Gyeong Tae Kwon: Consideration of the Accuracy by Variation of Respiration in Real-time Position Management Respiratory Gating System, Jounal of Korean Society for Radiation Therpy, 25(1), 49-55, 2013
  13. Robert D. Timmerman, Rebecca P, Harvey I. Pass, et al.: RTOG 0618: Stereotactic body radiation therapy (SBRT) to treat operable early-stage lung cancer patients, American Society of Clinical Oncology, 31, S7523 (abstr), 2013
  14. Li F, Li J, Zhang Y, et al.: Geometrical differences in gross target volumes between 3DCT and 4DCT imaging in radiotherapy for non-small-cell lung cancer, Jounal of Radiation Research, 54(5), 950-956, 2013 https://doi.org/10.1093/jrr/rrt017
  15. Jeong-Eun Rah, Dong-Oh Shin, Ju-Young Hong, et al.: Study on Dosimetric Properties of Radiophotoluminescent Glass Rod Detector, Journal of radiation protection and research, 31(4), 181-186, 2006
  16. Hosang Jeon, Jiho Nam, Dahl Park, et al.: Reading Deviations of Glass Rod Dosimeters Using Different Pre-processing Methods for Radiotherapeutic in-vivo Dosimetry, Progress in Medical Physics, 24(2), 92-98, 2013 https://doi.org/10.14316/pmp.2013.24.2.92
  17. Se Sik Kang, In Ho Go, Ga Joong Kim, et al.: Radiation Therapeutics 3rd edition, 18-27, Cheong-gu munhwasa, 2014