DOI QR코드

DOI QR Code

Effect of CT Contrast Media on Radiation Therapy Planning (Head & Neck Cancer and Prostate Cancer)

CT조영제가 방사선치료계획(두경부, 전립선)에 미치는 영향

  • Jang, Jaeuk (Dept. of Radiation Oncology, Chungnam National University Hospital) ;
  • Han, Manseok (Dept. of Radiological Science, Kangwon National University) ;
  • Kim, Minjeong (Dept. of Health Medical Science, Graduate School, Kangwon National University) ;
  • Kang, Hyeonsoo (Dept. of Health Medical Science, Graduate School, Kangwon National University)
  • 장재욱 (충남대학교병원 방사선종양학과) ;
  • 한만석 (강원대학교 방사선학과) ;
  • 김민정 (강원대학교 대학원 보건의료과학과) ;
  • 강현수 (강원대학교 대학원 보건의료과학과)
  • Received : 2016.09.22
  • Accepted : 2016.10.17
  • Published : 2016.10.31

Abstract

This study is to evaluate the effect of a Contrast Media (CM) on dose calculations and clinical significance in Radiation (Electromagnetic wave) Therapy (RT) plans for head & neck (H&N) and prostate cancer. Pinnacle 8.0 system was used to measure the change of Electron Density (ED) of the tissue for CM. To determine the effect of dose calculation due to CM, we did the RT planning for 30 patients. To compare the ED and dose calculations of RT plans, 3D CRT and IMRT plans were do with pinnacle and Tomotherapy planning system. Mean difference of ED between enhanced and unenhanced CT was less than 4%: H&N Target Volume (TV) 2.1%, parotid 1.9%, SMG 3.6%, tongue 0.9%, spinal cord 0.3%, esophagus 2.6%, mandible 0.1% and prostate TV 0.7%, lymph node 1.1%, bladder 1.2%, rectum 1.5%, small bowel 1.2%, colon 0.6%, penile bulb 0.8%, femoral head -0.2%. The dose difference between RT plan using CM and without CM showed an increase of dose in TV. The rate of increase was less than 2.5% (3D CRT: H&N 0.69~2.51%, prostate 0.04~1.14%, IMRT: H&N 0.58~1.31%, prostate 0.36~1.04%). RT plans using a CM has the insignificant effect on the organs and TV, so this error is allowable clinically. However, the much more accurate plan is possible as to image fusion (CM and without CM images) to ROI contour and when dose calculation, use the without CM image. Using the fusion of 'ROI import' perform calculations on without CM, it will be able to reduce the error (1~3%) caused by the CM.

두경부와 전립선 암 환자에서 CT조영제가 방사선치료계획에 미치는 영향을 확인하고 선량계산 정확성 향상을 위하여 본 연구를 실시하였다. 30명의 환자에 대하여 Pinnacle 8.0 시스템을 이용하여 조영제에 의한 조직의 전자밀도 변화를 측정하였으며 각각의 방사선치료계획을 통한 선량계산을 실시하였다. Pinnacle과 Tomotherapy planning 시스템을 이용하여 각각의 전자밀도와 3D 입체조형방사선치료(3D CRT)와 세기변조방사선치료(IMRT)계획을 수립하였다. 조영제에 의한 전자밀도의 변화는 4%이하로 두경부: 표적용적 2.1%, 이하선 1.9%, 하악선 3.6%, 혀 0.9%, 척수 0.3%, 식도 2.6%, 하악골 0.1%, 전립선: 표적용적 0.7%, 림프절 1.1%, 방광 1.2%, 직장 1.5%, 소장 1.2%, 대장 0.6%, penile bulb 0.8%, 대퇴골두 -0.2%로 나타났다. 선량계산의 차이는 2.5% 이하의 선량 증가가 발생하였다(3D CRT: 두경부 0.69~2.51%, 전립선 0.04~1.14%, IMRT: 두경부 0.58~1.31%, 전립선 0.36~1.04%). 이러한 오차는 임상에서 허용 가능한 오차 이내이지만 영상융합(조영증강 영상과 조영증강 하지않은 영상)이나 ROI import 기능을 활용하여 조영 증강하지 않은 영상에서 선량계산을 실시한다면 1~3%의 방사선치료계획 선량 오차를 줄일 수 있을 것으로 기대된다.

Keywords

References

  1. G. Williams, M. Tobler, D. Gaffney, J. Moeller, and D. D. Leavitt, Med. Dosim 27, 275 (2002). https://doi.org/10.1016/S0958-3947(02)00147-4
  2. F. M. Khan, The physics of radiation therapy 4th. Lippincott Williams & Wilkins (2010).
  3. G. N. Hounsfield, Br. J. Radiol. 68, 166 (1995).
  4. Y. Watanabe, Phys. Med. Biol. 44, 2201 (1999). https://doi.org/10.1088/0031-9155/44/9/308
  5. S. J. Thomas, Br. J. Radiol. 72, 781 (1999). https://doi.org/10.1259/bjr.72.860.10624344
  6. D. C. Weber, M. Rouzaud, and R. Miralbell, Radiother Oncol 59, 95 (2001). https://doi.org/10.1016/S0167-8140(01)00306-1
  7. A. Zabel-du Bois, B. Ackermann, H. Hauswald, O. Schramm, G. Sroka-Perez, P. Huber, J. Debus, and S. Milker-Zabel, Strahlenther Onkol 185, 318 (2009). https://doi.org/10.1007/s00066-009-1927-6
  8. H. S. Li, J. H. Cheon, W. Zhang, D. P. Shang, B. S. Li, T. Sun, X. T. Lin, and Y. Yin, Asian Pac. J. Cancer. Prev. 14, 1609 (2013). https://doi.org/10.7314/APJCP.2013.14.3.1609
  9. H. S. Thomsen, Ame. J. Roentgenology 181, 1463 (2003). https://doi.org/10.2214/ajr.181.6.1811463
  10. H. S. Thomsen and S. K. Morcos, Br. J. Radiol. 76, 513 (2003). https://doi.org/10.1259/bjr/26964464
  11. U. Ramm, M. Damrau, S. Mose, K. H. Manegold, C. G. Rahl, and H. D. Bottcher, Phys. Med. Biol. 46, 2631 (2001). https://doi.org/10.1088/0031-9155/46/10/308
  12. A. J. Liu, N. Vora, S. Suh, A. Liu, T. E. Schultheiss, and J. Y. C. Wong, Med. Dosim 40, 32 (2015). https://doi.org/10.1016/j.meddos.2014.07.003
  13. E. Amato, D. Lizio, N. Settineri, A. D. Pasquale, I. Salamone, and I. Pandolfo, Med. Phys. 37, 4249 (2010). https://doi.org/10.1118/1.3460797
  14. S. H. Choi, D. W. Park, K. B. Kim, D. W. Kim, J. Lee, and D. O. Shin, Progress in Medical Physics 26, 294 (2015). https://doi.org/10.14316/pmp.2015.26.4.294
  15. J. U. Jang, H. S. Lim, M. S. Han, Y. K. Kim, and M. C. Jeon, J. Digital Convergence 11, 577 (2013). https://doi.org/10.14400/JDPM.2013.11.12.577
  16. T. J. Choi and O. B. Kim, Korean J. Med. Phys. 22, 92 (2011).