DOI QR코드

DOI QR Code

외란 관측기를 이용한 BLDC 전동기의 속도제어

Speed Control of the BLDC Motor using the Disturbance Observer

  • 전용호 (중원대학교 메카트로닉스학과)
  • Jeon, Yong-Ho (Dept. of Mechatronics Engineering, JungWon University)
  • 투고 : 2016.09.05
  • 심사 : 2016.10.24
  • 발행 : 2016.10.31

초록

본 논문은 BLDC 전동기의 정밀한 속도제어를 위하여 외란 관측기의 설계 및 영향을 제거하는 제어기 설계방법을 제안한다. BLDC 전동기의 외부에서 회전축에 작용하는 부하의 변동과 전기적인 시스템에서 발생하는 역기전력을 외란으로 가정하고, 외란은 구간에 대한 상수로 가정하여 루엔버거 관측기를 설계한다. 시스템 상태에 대한 관측기의 오차가 0으로 수렴할 수 있도록 적절한 이득을 설정하는 방법을 보이고, 추종성능을 향상시킬 수 있는 적절한 PI제어기의 이득을 설정하기 위한 방법을 제시한다. 제안된 제어기를 120W급의 BLDC 전동기에 적용하여 속도 그리고 전류 레퍼런스를 추종하는 능력을 시뮬레이션 시험하였다. 상수부하의 변동을 외란으로 적용하였고, 그 결과 설계된 제어기의 정상상태 오차가 0.1 [%] 이내를 가짐으로 상태 추종성능에 대해 유용한 제어기임을 보일 수 있었다.

In this paper, we propose a design method for speed controller, current control of a Brushless Direct Current(: BLDC) motor using disturbance rejection techniques. Disturbance assumes a back electromotive force occurring in the electrical system and the variation of the load acting on the rotary shaft from the outside of the motor. And it assumed to be constant during the time interval and the Luenberger's observer design. So that the error of the observer about the system status can converge to zero show how to set the appropriate gain. Further, to stabilize the whole system, and proposes a method for setting the appropriate PI gain control to improve the tracking performance. By applying the proposed controller to 120W BLDC motors were tested for the ability to follow the velocity and current reference. Since the simulation results of the steady state error is within 0.1%, we were able to show the usefulness of the tracking performance of the proposed controller.

키워드

참고문헌

  1. J. Kim, "A robust sensorless speed control of sensorless BLDC motor," J. of the Korea Institute of Electronic Communication Sciences, vol. 3, no. 4, 2008, pp. 266-275.
  2. H. Lee, W. Cho, and K. Lee, "Improved switching method for sensorless BLDC motor drive," J. of the Korea Institute of Electronic Communication Sciences, vol. 5, no. 2, 2010, pp. 164-170.
  3. S. Kwak, H. Kim, and J. Yang, "Design and Implementation of Oil Pump Control System Driven by a Brushless DC Electric Motor," J. of the Korea Institute of Electronic Communication Sciences, vol. 9, no. 1, 2014, pp. 83-90. https://doi.org/10.13067/JKIECS.2014.9.1.83
  4. Y. Jeon and M. Cho, "A Speed Control of BLDC Motor using Adaptive Back stepping Technique," J. of the Korea Institute of Electronic Communication Sciences, vol. 9, no. 8, 2014, pp. 899-905. https://doi.org/10.13067/JKIECS.2014.9.8.899
  5. J. Zhou and Y. Wang, "Adaptive backstepping speed controller design for a permanent magnet synchronous motor," Electric Power Applications IEE Proceedings, vol. 149, no. 2, 2002, pp. 165-172. https://doi.org/10.1049/ip-epa:20020187
  6. L. Dongliang and Z. Lixin, "Application of back stepping control in PMSM servo system," Electronic Measurement & Instruments 2009, ICEMI '09. 9th Int. Conf. on, vol. 3, Beijing, China, Aug. 2009, pp. 638-641.
  7. M. Ouassaid, M. Cherkaoui, and Y. Zidani, "A Nonlinear Speed Control for a PM Synchronous Motor Using an Adaptive Back-stepping Control Approach," IEEE Int. Conf. on Industrial Technology (ICIT), vol. 3, Hammamet, Tunisia, Dec. 2004, pp. 1287-1292.
  8. S. Rebouh, A. Kaddouri, R. Abdessemed, and A. Haddoun, "Adaptive Back stepping speed Control for a Permanent Magnet Synchronous Motor," Management and Service Science 2011 Int. Conf., Wuhan, China, Aug. 2011.
  9. G. Herbst, "A Simulative Study on Active Disturbance Rejection Control (ADRC) as a Control Tool for Practitioners," Electronics, vol. 2, 2013, pp. 246-279. https://doi.org/10.3390/electronics2030246