DOI QR코드

DOI QR Code

Effect of Micro-Alloying Elements on Recrystallization Behavior of Carbon Steels at Different Strain Rates

변형률 속도에 따른 탄소강의 재결정 거동에 미치는 미량 합금 원소의 영향

  • Lee, Sang-In (Department of Materials Science and Engineering Seoul National University of Science and Technology) ;
  • Lim, Hyeon-Seok (Department of Materials Science and Engineering Seoul National University of Science and Technology) ;
  • Hwang, Byoungchul (Department of Materials Science and Engineering Seoul National University of Science and Technology)
  • 이상인 (서울과학기술대학교 신소재공학과) ;
  • 임현석 (서울과학기술대학교 신소재공학과) ;
  • 황병철 (서울과학기술대학교 신소재공학과)
  • Received : 2016.07.07
  • Accepted : 2016.08.31
  • Published : 2016.10.27

Abstract

The present study deals with the effects of micro-alloying elements such as Ni, V, and Ti on the recrystallization behavior of carbon steels at different strain rates. Eight steel specimens were fabricated by varying the chemical composition and reheating temperature; then, a high-temperature compressive deformation test was conducted in order to investigate the relationship of the microstructure and the recrystallization behavior. The specimens containing micro-alloying elements had smaller prior austenite grain sizes than those of the other specimens, presumably due to the pinning effect of the formation of carbonitrides and AlN precipitates at the austenite grain boundaries. The high-temperature compressive deformation test results indicate that dynamic recrystallization behavior was suppressed in the specimens with micro-alloying elements, particularly at increased strain rate, because of the pinning effect of precipitates, grain boundary dragging and lattice misfit effects of solute atoms, although the strength increased with increasing strain rate.

Keywords

References

  1. K. J. Irvine, F. B. Pickering and T. Gladman, J. Iron Steel Inst., 205, 161 (1967).
  2. K. J. Irvine, T, Gladman, J. Orr and F. B. Pickering, J. Iron Steel Inst., 208, 717 (1970).
  3. T. Gladman and D. Dulieu, Met. Sci., 8, 167 (1974). https://doi.org/10.1179/msc.1974.8.1.167
  4. O. Kwon and K. J. Lee, J. Korean Inst. Met. Mater., 36, 1866 (1998).
  5. B. Zhao, T. Zhao, G. Li and Q. Lu, Met. Mater. Int., 21, 692 (2015). https://doi.org/10.1007/s12540-015-4471-1
  6. X. Tao, C. Li, L. Han and J. Gu, Met. Mater. Int., 21, 440 (2015). https://doi.org/10.1007/s12540-015-4431-9
  7. N. Lsasti, D. Jorge-Badiola, L. M. Taheri and P. Uranga, Met. Mater. Int., 20, 807 (2014). https://doi.org/10.1007/s12540-014-5002-1
  8. R. Shukla, S. K. Ghosh, D. Chakrabarti and S. Chatterjee, Met. Mater. Int., 21, 85 (2015). https://doi.org/10.1007/s12540-015-1010-z
  9. T. Gladman, I. D. McIvor and F. B. Pickering, J. Iron Steel Inst., 209, 380 (1971).
  10. J. J. Jonas and I. Weiss, Met. Sci., 13, 238 (1979). https://doi.org/10.1179/msc.1979.13.3-4.238
  11. T. Chandra, I. Weiss and J. J. Jonas, Met. Sci., 16, 97 (1982). https://doi.org/10.1179/msc.1982.16.2.97
  12. S. H. Cho, K. B. Kang and J. J. Jonas, ISIJ Int., 41, 63 (2001). https://doi.org/10.2355/isijinternational.41.63
  13. E. A. Simielli, S. Yue and J. J. Jonas, Metall. Trans. A, 23, 597 (1992). https://doi.org/10.1007/BF02801177
  14. M. G. Akben, B. Bacroix and J. J. Jonas, Acta Metall., 31, 161 (1983). https://doi.org/10.1016/0001-6160(83)90076-7
  15. M. J. Luton, R. Dorvel and R. A. Petkovic, Metall. Trans. A, 11, 411 (1980). https://doi.org/10.1007/BF02654565
  16. R. Radis and E. Kozeschnik, Model. Simulat. Mater. Sci. Eng., 18, 055003 (2010). https://doi.org/10.1088/0965-0393/18/5/055003
  17. S. Gunduz and R. C. Cochrane, Mater. Des., 26, 486 (2005). https://doi.org/10.1016/j.matdes.2004.07.022
  18. F. Boratto, R. Barbosa, S. Yue and J. J. Jonas, International Conference on Physical Metallurgy of Thermomechanical Processing of Steels and Other Metals, THERMEC-88, 1, 383 (1988).
  19. C. Zener and J. H. Holloman, J. Appl. Phys., 15, 22 (1944). https://doi.org/10.1063/1.1707363
  20. T. Gladman, Proceedings of the Royal Society of London A: Mathematical, Physical and Engineering Sciences, 294, 298 (1966). https://doi.org/10.1098/rspa.1966.0208
  21. K. B. Kang, O. Kwon, W. B. Lee and C. G. Park, Scripta Meter., 36, 1303 (1997). https://doi.org/10.1016/S1359-6462(96)00359-4
  22. S. S. Hansen, J. B. Vander Sande and M. Cohen, Metall. Trans. A, 11, 387 (1980). https://doi.org/10.1007/BF02654563
  23. H. J. McQueen and J. J. Jonas, Treatise on Materials Science and Technology, 6, 393 (1975). https://doi.org/10.1016/B978-0-12-341806-7.50014-3
  24. S. H. Cho, M. S. Oh, C. Y. So and Y. C. Yoo, J. Korean Inst. Met. Mater., 33, 544 (1995).
  25. B. Eghbali, Mater. Sci. Eng. A, 527, 3402 (2010). https://doi.org/10.1016/j.msea.2010.01.077
  26. I. Weiss and J. J. Jonas, Metall. Trans. A, 10, 831 (1979). https://doi.org/10.1007/BF02658301
  27. I. Tamura, H. Sekine, T. Tanaka, and C. Ouchi, Thermomechanical Processing of High-Strength Low-Alloy Steels, p.154, Butterworth & Co., Ltd., London, (1988).
  28. O. Kwon and A. J. DeArdo, Acta Metall. Mater., 39, 529 (1991). https://doi.org/10.1016/0956-7151(91)90121-G
  29. J. K. Choi, D. H. Seo, J. S. Lee, K. K. Um and W. Y. Choo, ISIJ Int., 43, 746 (2003). https://doi.org/10.2355/isijinternational.43.746
  30. S. W. Lee, D. H. Seo and W. Y. Choo, J. Korean Inst. Met. Mater., 36, 1966 (1998).
  31. B. Eghbali and A. Abdollah-Zadeh, Mater. Des., 28, 1021 (2007). https://doi.org/10.1016/j.matdes.2005.11.006