DOI QR코드

DOI QR Code

Comparison of Electrical Properties between Sputter Deposited Au and Cu Schottky Contacts to n-type Ge

  • Kim, Hogyoung (Department of Visual Optics, Seoul National University of Science and Technology) ;
  • Kim, Min Kyung (Department of Electronic and IT Media Engineering, Seoul National University of Science and Technology) ;
  • Kim, Yeon Jin (Department of Electronic and IT Media Engineering, Seoul National University of Science and Technology)
  • Received : 2016.08.19
  • Accepted : 2016.09.05
  • Published : 2016.10.27

Abstract

Using current-voltage (I-V) and capacitance-voltage (C-V) measurements, the electrical properties of Au and Cu Schottky contacts to n-Ge were comparatively investigated. Lower values of barrier height, ideality factor and series resistance were obtained for the Au contact as compared to the Cu contact. The values of capacitance showed strong dependence on the bias voltage and the frequency. The presence of an inversion layer at the interface might reduce the intercept voltage at the voltage axis, lowering the barrier height for C-V measurements, especially at lower frequencies. In addition, a higher interface state density was observed for the Au contact. The generation of sputter deposition-induced defects might occur more severely for the Au contact; these defects affected both the I-V and C-V characteristics.

Keywords

References

  1. H. Shang, M. Frank, E. Gusev, J. Chu, S. Bedell, K. Guarini and M. Jeong, IBM J. Res. Dev., 50, 377 (2006). https://doi.org/10.1147/rd.504.0377
  2. A. Dimoulas, P. Tsipas, A. Sotiropoulos and E. Evangelou, Appl. Phys. Lett., 89, 252110 (2006). https://doi.org/10.1063/1.2410241
  3. D. Kuzum, K. Martens, T. Krishnamohan and K. Saraswat, Appl. Phys. Lett., 95, 252101 (2009). https://doi.org/10.1063/1.3270529
  4. T. Nishimura, K. Kita and A. Toriumi, Appl. Phys. Lett., 91, 123123 (2007). https://doi.org/10.1063/1.2789701
  5. Y. Zhou, M. Ogawa, M. Bao, W. Han, R. Kawakami and K. Wang, Appl. Phys. Lett., 94, 242104 (2009). https://doi.org/10.1063/1.3157128
  6. T. Nishimura, K. Kita and A. Toriumi, Appl. Phys. Exp., 1, 051406 (2008). https://doi.org/10.1143/APEX.1.051406
  7. B. Tsui and M. Kao, Appl. Phys. Lett., 103, 032104 (2013). https://doi.org/10.1063/1.4813834
  8. F. Auret, W. Meyer, S. Coelho and M. Hayes, Appl. Phys. Lett., 88, 242110 (2006). https://doi.org/10.1063/1.2213203
  9. E. Simoen, K. Opsomer, C. Claeys, K. Maex, C. Detavernier, R. Meirhaeghe and P. Clauws, J. Electrochem. Soc., 154, H857 (2007). https://doi.org/10.1149/1.2759832
  10. S. Coelho, F. Auret, P. Rensburg and J. Nel, J. Appl. Phys., 114, 173708 (2013). https://doi.org/10.1063/1.4828999
  11. F. Auret, S. Coelho, P. Rensburg, C. Nyamhere and W. Meyer, Mater. Sci. Semicond. Process., 11, 348 (2008). https://doi.org/10.1016/j.mssp.2008.09.001
  12. H. Michaelson, J. Appl. Phys., 48, 4729 (1977). https://doi.org/10.1063/1.323539
  13. S. M. Sze, Physics of Semiconductor Devices, 2nd Ed., Wiley, New York (1981).
  14. J. Sullivan, R. Tung, M. Pinto and W. Graham, J. Appl. Phys., 70, 7403 (1991). https://doi.org/10.1063/1.349737
  15. S. Cheung and N. Cheung, Appl. Phys. Lett., 49, 85 (1986). https://doi.org/10.1063/1.97359
  16. S. Witczak, J. Suehle and M. Gaitan, Solid State Electron., 35, 345 (1992). https://doi.org/10.1016/0038-1101(92)90238-8
  17. P. Chattopadhyay and B. Raychaudhuri, Solid State Electron., 36, 605 (1993). https://doi.org/10.1016/0038-1101(93)90272-R
  18. M. Green and J. Shewchun, Solid State Electron., 16, 1141 (1973). https://doi.org/10.1016/0038-1101(73)90141-X
  19. W. Monch, J. Vac. Sci. Technol. B, 17, 1867 (1999). https://doi.org/10.1116/1.590839
  20. A. Chawanda, J. Nel, F. Auret, W. Mtangi, C. Nyamhere, M. Diale and L. Leach, J. Korean Phys. Soc., 57, 1970 (2010). https://doi.org/10.3938/jkps.57.1970
  21. H. Yao, D. Chi, R. Li, S. Lee and D. Kwong, Appl. Phys. Lett., 89, 242117 (2006). https://doi.org/10.1063/1.2408665
  22. F. Auret, S. Coelho, W. Meyer, C. Nyamhere, M. Hayes and J. Nel, J. Electron. Mater., 36, 1604 (2007). https://doi.org/10.1007/s11664-007-0245-y
  23. S. Chattopadhyay, K. Bera, K. Ray, K. Bose, D. Dentel and L. Kubler, J. Mat. Sci. Mater. Electron., 9, 403 (1998).
  24. M. Mamor, J. Phys. Condens. Matter., 21, 335802 (2009). https://doi.org/10.1088/0953-8984/21/33/335802
  25. S. Sun, Y. Sun, Z. Liu, D. Lee, S. Peterson and P. Pianetta, Appl. Phys. Lett., 88, 021903 (2006). https://doi.org/10.1063/1.2162699
  26. X. Li, A. Li, X. Liu, Y. Gong, X. Chen, H. Li and D. Wu, Appl. Surf. Sci., 257, 4589 (2011). https://doi.org/10.1016/j.apsusc.2010.12.072
  27. B. Xue, H. Chang, B. Sun, S. Wang and H. Liu, Chin. Phys. Lett., 29, 046801 (2012). https://doi.org/10.1088/0256-307X/29/4/046801