DOI QR코드

DOI QR Code

Temperature-Dependent Viscoplastic-Damage Constitutive Model for Nonlinear Compressive Behavior of Polyurethane Foam

폴리우레탄 폼 비선형 압축 거동 해석용 온도 의존 손상 점소성 구성방정식

  • Lee, Jeong-Ho (Department of Naval Architecture and Ocean Engineering, Pusan National University) ;
  • Kim, Seul-Kee (Department of Naval Architecture and Ocean Engineering, Pusan National University) ;
  • Lee, Jae-Myung (Department of Naval Architecture and Ocean Engineering, Pusan National University)
  • 이정호 (부산대학교 조선해양공학과) ;
  • 김슬기 (부산대학교 조선해양공학과) ;
  • 이제명 (부산대학교 조선해양공학과)
  • Received : 2016.08.01
  • Accepted : 2016.09.27
  • Published : 2016.10.30

Abstract

Recently, polyurethane foam has been used in various industry fields to preserve temperature environment of structures, and a wide range of loads from the static to the dynamic are imposed on the material during a life period. The biggest characteristic of polyurethane foam is porosity as being polymeric material, and it is generally known that insulation performance of the material strongly depends on internal void size. In addition, polyurethane foam's mechanical behavior has high dependence on strain rate and temperature as well as being highly non-linear ductile for compression. In the non-linear compressive behavior, volume fraction of voids and elastic modulus decrease as strain increases. Therefore, in this study, temperature-dependent viscoplastic-damage constitutive model was developed to describe the non-linear compressive behavior with the aforementioned features of polyurethane foam.

현재 많은 산업에서 구조물의 온도환경 유지를 위한 단열재로 폴리우레탄 폼이 사용되며, 수명 동안 정적 및 동적의 다양한 하중이 이에 부과된다. 폴리우레탄 폼은 고분자재료로써 다공성이며, 단열성능은 내부기공의 크기에 크게 의존한다. 또한, 폴리우레탄 폼의 기계적 거동은 변형률 속도 및 온도에 대한 의존성이 큰 동시에 압축에 대하여 큰 비선형 연성거동을 보인다. 이러한 비선형 연성 압축거동 중에 폴리우레탄 폼은 변형률의 증가에 따라 기공율과 탄성계수의 감소를 보인다. 따라서 본 연구에서는 상기 특성들을 포함한 폴리우레탄 폼의 변형률 속도 및 온도 의존 비선형 압축거동을 모사하기 위하여 온도 의존 손상 점소성 구성방정식이 개발되었다.

Keywords

References

  1. Altenbach, H., Sadowski, T. (2014) Failure and Damage Analysis of Advanced Materials, Springer Vienna, p.278.
  2. Demharter, A. (1998) Polyurethane Rigid Foam, A Proven Thermal Insulating Material for Applications between $+130^{\circ}C$ and $-196^{\circ}C$, Cryogenics, 38(1), pp.113-117. https://doi.org/10.1016/S0011-2275(97)00120-3
  3. Di Prima, M.A., Lesniewski, M., Gall, K., McDowell, D.L., Sanderson, T., Campbell, D. (2007) Thermo-Mechanical behavior of Epoxy Shape Memory Polymer Foams, Smart Mater. & Struct., 16(6), pp.2330-2340. https://doi.org/10.1088/0964-1726/16/6/037
  4. Gurson, A.L. (1977) Continuum Theory of Ductile Rupture by Void Nucleation and Growth: Part I-Yield Criteria and Flow Rules for Porous Ductile Media, J. Eng. Mater. & Tech., 99(1), pp.2-15. https://doi.org/10.1115/1.3443401
  5. Hou, C., Czubernat, K., Jin, S.Y., Altenhof, W., Maeva, E., Seviaryna, I., Bandyopadhyay-Ghosh, S., Sain, M., Gu, R. (2014) Mechanical Response of Hard Bio-based PU Foams under Cyclic Quasi-static Compressive Loading Conditions, Int. J. Fatigue, 59, pp.76-89. https://doi.org/10.1016/j.ijfatigue.2013.09.012
  6. Khan, A.S., Liang, R. (1999) Behaviors of Three BCC Metal over a Wide Range of Strain Rates and Temperatures: Experiments and Modeling, Int. J. Plast., 15(10), pp.1089-1109. https://doi.org/10.1016/S0749-6419(99)00030-3
  7. Lee, C.S., Lee, J.M. (2014) Anisotropic Elasto-viscoplastic Damage Model for Glass-fiber Reinforced Polyurethane Foam, J. Compos. Mater., 48(27), pp.3367-3380. https://doi.org/10.1177/0021998313509863
  8. Lee, J.H., Kim, S.K., Park, S.B., Bang, C.S., Lee, J.M. (2016) Application of Gurson Model for Evaluation of Density-Dependent Mechanical Behavior of Polyurethane Foam: Comparative Study on Explicit and Implicit Method, Macromol. Mater. & Eng., 301(6), pp.694-706. https://doi.org/10.1002/mame.201500431
  9. Lemaitre, J. (1985) A Continuous Damage Mechanics Model for Ductile Fracture, J. Eng. Mater. & Tech., 107(1), pp.83-89. https://doi.org/10.1115/1.3225775
  10. Lim, G.T., Altstadt, V., Ramsteiner, F. (2009) Understanding the Compressive behavior of Linear and Cross-linked Poly(vinyl chloride) Foams, J. Cell. Plast., 45, pp.419-439. https://doi.org/10.1177/0021955X09105372
  11. Linul, E., Marsavina, L., Voiconi, T., Sadowski, T. (2013) Study of Factors Influencing the Mechanical Properties of Polyurethane Foams under Dynamic Compression, Int. J. Phys.: Conf. Ser., 451(1), p. 012002. IOP Publishing. https://doi.org/10.1088/1742-6596/451/1/012002
  12. Luo, H., Zhang, Y., Wang, B., Lu, H. (2010) Characterization of the Compressive behavior of Glass Fiber Reinforced Polyurethane Foam at Different Strain Rates, J. Offshore Mech. & Arctic Eng., 132(2), 021301. https://doi.org/10.1115/1.4000396
  13. Modesti, M., Lorenzetti, A., Besco, S. (2007) Influence of Nanofillers on Thermal Insulating Properties of Polyurethane Nanocomposites Foams, Polym. Eng. & Sci., 47(9), pp.1351-1358. https://doi.org/10.1002/pen.20819
  14. Tvergaard, V., Needleman, A. (1984) Analysis of the Cup-cone Fracture in a Round Tensile Bar, Acta Metall., 32(1), pp.157-169. https://doi.org/10.1016/0001-6160(84)90213-X

Cited by

  1. Mechanical Behavior of Polymer Foam Reinforced with Silica Aerogel vol.31, pp.6, 2017, https://doi.org/10.26748/KSOE.2017.12.31.6.413