DOI QR코드

DOI QR Code

Production of fermented apple juice using Lactobacillus plantarum JBE245 isolated from Korean traditional Meju

메주에서 분리한 Lactobacillus plantarum JBE245를 이용한 사과 발효 음료 제조

  • Heo, Jun (Department of Biological Sciences, Chonbuk National University) ;
  • Park, Hae-Suk (Microbial Institute for Fermentation Industry) ;
  • Uhm, Tai-Boong (Department of Biological Sciences, Chonbuk National University)
  • 허준 (전북대학교 자연과학대학 생명과학과) ;
  • 박해석 ((재)발효미생물산업진흥원) ;
  • 엄태붕 (전북대학교 자연과학대학 생명과학과)
  • Received : 2016.05.20
  • Accepted : 2016.08.02
  • Published : 2016.10.31

Abstract

Eighty-four strains of lactic acid bacteria were isolated from Korean fermented foods for the production of fermented apple juice. Among these strains, the JBE245 strain that showed rapid growth and food functionality was selected and identified as Lactobacillus plantarum. This strain reached the stationary phase after 24 h fermentation at $30^{\circ}C$ with $1.5{\times}10^8$ colony forming unit (CFU)/mL of viable cells, and maintained its viability levels even after 14 days of storage. During fermentation, the ${\alpha}-glucosidase$ inhibitory activity (40.4%), total polyphenol content (583.6 mg gallic acid equivalent (GAE)/mL), and 2,2-diphenyl-l-picryl-hydrazyl hydrate (DPPH) radical scavenging activity (52%) were increased. As judged by a sensory test, the overall preference for the fermented juice (4.22) was comparable to that for the unfermented juice (4.72), indicating that fermentation does not significantly affect the sensory characteristics of apple juice. Consequently, the fermented beverage containing L. plantarum JBE245 and apple juice is a promising functional health food.

젖산세균을 이용한 사과 발효 음료는 건강 증진을 위한 기능성 식품으로 이용할 수 있다. 이에 따라 본 연구에서는 젖산세균을 선발하여 발효 음료 제조를 시도하였다. 국내 전통 발효 식품에서 분리된 84종의 젖산세균 가운데 사과 음료에서 생육이 가장 우수하고 항당뇨 활성이 우수한 JBE245 균주를 최종 선발하였다. 메주에서 분리된 JBE245 균주는 Lactobacillus plantarum으로 동정되었으며 사과 발효 음료의 생균수는 24시간 배양 후 $3.6{\times}10^8CFU/mL$로 이후 생균수를 유지하였다. 항당뇨 활성의 지표인 알파 글루코시데이스 저해능은 발효전 18.5%에서 증가하여 최대 40.4%까지 증가하였다. 산화방지 활성 지표인 총 폴리페놀 함량은 583.6 mg GAE/mL로 발효 전(424.5 mg GAE/mL)보다 증가하였으며, DPPH 소거활성은 52.0%로 발효 전(43.5%) 보다 높았다. 발효 음료의 기호도를 조사한 결과, 발효 전후 모든 항목에서 유의적 차이는 없었으며 종합적 선호도는 각각 4.72, 4.22로 나타났다(p<0.05). 이러한 결과들을 토대로 JBE245 균주를 이용한 발효 음료가 산화방지 및 항당뇨 기능이 향상된 프로바이오틱 발효 식품이라는 점에서 유용할 것으로 보인다.

Keywords

References

  1. de Souza Ellendersen L, Granato D, Guergoletto KB, Wosiacki G. Development and sensory profile of a probiotic beverage from apple fermented with Lactobacillus casei. Eng. Life Sci. 12: 475- 485 (2012) https://doi.org/10.1002/elsc.201100136
  2. Champagne CP, Raymond Y. Gagnon R. Viability of Lactobacillus rhamnosus R0011 in an apple-based fruit juice under simulated storage conditions at the consumer level. J. Food sci. 73: 221-226 (2008) https://doi.org/10.1111/j.1750-3841.2008.00775.x
  3. Pereira ALF, Maciel TC, Rodrigues S. Probiotic beverage from cashew apple juice fermented with Lactobacillus casei. Food Res. Int. 44: 1276-1283 (2011) https://doi.org/10.1016/j.foodres.2010.11.035
  4. Hwang TY, Son SM, Lee CY, Moon KD. Quality changes of fresh-cut packaged fuji apples during storage. Korean J. Food Sci. Technol. 33: 469-473 (2001)
  5. Bang HY, Cho SD, Kim DM, Kim GH. Comparison of antioxidative activities of Fuji apples parts according to production region. J. Korean Soc. Food. Sci. Nutr. 44: 557-563 (2015) https://doi.org/10.3746/jkfn.2015.44.4.557
  6. Rezk BM, Haenen GR, van der Vijgh WJ, Bast A. The antioxidant activity of phloretin: The disclosure of a new antioxidant pharmacophore in flavonoids. Biochem. Biophys. Res. Commun. 295: 913 (2002)
  7. Kern M, Tjaden Z, Ngiewih Y, Puppel N, Will F, Dietrich H, Pahlke G, Marko D. Inhibitors of the epidermal growth factor receptor in apple juice extract. Mol. Nutr. Food Res. 49: 317328 (2005)
  8. Tabak C, ARTS IC, Smit HA, Heederik D, Kromhout D. Chronic obstructive pulmonary disease and intake of catechins, flavonols, and flavones: The MORGEN Study. Am. J. Clin. Nutr. 164: 61-64 (2001)
  9. Bortolotto V, Piangiolino C. Apple biophenol synergistic complex and its potential benefits for cardiovascular health. Nutrafoods 12: 71-79 (2013) https://doi.org/10.1007/s13749-013-0029-3
  10. Violeta NOUR, Trandafir I, Ionica ME. Compositional characteristics of fruits of several apple (Malus domestica Borkh.) cultivars. Not. Bot. Hort. Agrobot. Cluj. 38: 228-233 (2010)
  11. Gerritse K, Posno M, Schellekens MM, Boersma WJ, Claassen E, Oral administration of TNP-Lactobacillus conjugates in mice: A model for evaluation of mucosal and systemic immune responses and memory formation elicited by transformed lactobacilli. Res. Microbiol. 141: 955962 (1990)
  12. Mital BK, Garg SK. Anticarcinogenic, hypocholesterolemic, and antagonistic activities of Lactobacillus acidophilus. Critical Rev. Microbiol. 21: 174214 (1995)
  13. Kaizu H, Sasaki M, Nakajima H, Suzuki Y. Effect of antioxidative lactic acid bacteria on rats fed a diet deficient in vitamin E. J. Dairy. Sci. 76: 2493-2499 (1993) https://doi.org/10.3168/jds.S0022-0302(93)77584-0
  14. Rao DR, Chawan CB, Pulusani SR. Influence of milk and thermophilus milk on plasma cholesterol levels and hepatic cholesterogenesis in rats. J. Food Sci. 46: 1339-1341 (1981) https://doi.org/10.1111/j.1365-2621.1981.tb04168.x
  15. Davis CR, Wibowo D, Eschenbruch R, Lee TH. Fleet GH. Practical implications of malolactic fermentation: A review. Am. J. Enol. Vitic. 36: 290-301 (1985)
  16. Kim NJ, Yoon KY. Qualities and antioxidant activity of lactic acid fermented-potato Juice. J. Korean. Soc. Food. Sci. Nutr. 42: 542-549 (2013) https://doi.org/10.3746/jkfn.2013.42.4.542
  17. Park MJ, Lee SB. Physicochemical characteristics of cheonnyuncho fruit (Opuntia humifusa) fermented by Leuconostoc mesenteroides SM. Korean J. Food Sci. Technol. 45: 434-440 (2013). https://doi.org/10.9721/KJFST.2013.45.4.434
  18. Kim HJ, Park KB. Apple-fermented product and food, and production method of the same. Korea Patent 10-0676855 (2007)
  19. Park BB, Kim JI, Oh JY, Choi CI, Choi HS. Lactic acid bacteria fruit fermented liquor, lactic acid bacteria fermentation fruit beverage and manufacturing method thereof. Korea Patent 10-2015-0041519 (2015)
  20. Lee HL, Kang KW, Seo DH, Jung JH, Jung DH, Kim GW, Park SY, Shin WC, Shim HS, Park CS. Diversity of Lactic Acid Bacteria (LAB) in Makgeolli and Their Production of $\gamma$-Aminobutyric Acid. Korean J. Food Sci. Technol. 47: 204-210 (2015) https://doi.org/10.9721/KJFST.2015.47.2.204
  21. Park JH, Chung CH. Characteristics of takju (a cloudy korean rice wine) Prepared with nuruk (a traditional Korean rice wine fermentation starter), and Identification of Lactic Acid Bacteria in nuruk. Korean J. Food Sci. Technol. 46: 153-164 (2014) https://doi.org/10.9721/KJFST.2014.46.2.153
  22. Heo J, Ryu MS, Jeon SB, Oh HH, Jeong DY, Uhm TB. Characterization of Lactobacillus brevis JBE 30 as a starter for the brewing of traditional liquor. Korean J. Microbiol. 50: 233238 (2014)
  23. Jeong JK, Zheng Y, Choi HS, Han GJ, Park KY. Catabolic enzyme activities and physiological functionalities of lactic acid bacteria isolated from Korean traditional meju. J. Korean. Soc. Food. Sci. Nutr. 39: 1854-1859 (2010). https://doi.org/10.3746/jkfn.2010.39.12.1854
  24. Tibbot Brian K, Ronald W. Skadsen. Molecular cloning and characterization of a gibberellin-inducible, putative $\alpha$-glucosidase gene from barley. Plant. Mol. biol. 30: 229-241 (1996) https://doi.org/10.1007/BF00020110
  25. Singleton VL, Rossi JA. Colorimetry of total phenolics with phosphomolybdic-phosphotungstic acid reagent. Am. J. Enol. Viticult. 16: 144-158 (1965)
  26. Blios MS. Antioxidant determination by the use of a stable free radical. Nature 26: 1199-1203 (1958)
  27. Thompson JD, Higgins DG, Gibson TJ. CLUSTAL W: Improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res. 22: 4673-4680 (1994) https://doi.org/10.1093/nar/22.22.4673
  28. Tamura K, Nei M. Estimation of the number of nucleotide substitutions in the control region of mitochondrial DNA in humans and chimpanzees. Mol. Biol. Evol. 10: 512-526 (1993)
  29. Tamura K, Peterson D, Peterson N, Stecher G, Nei M, Kumar S. MEGA5: Molecular evolutionary genetics analysis using Maximum Likelihood, Evolutionary Distance, and Maximum Parsimony methods. Mol. Biol. Evol. 28: 27312739 (2011)
  30. Torriani S, Felis GE, Dellaglio F. Differentiation of Lactobacillus plantarum, L. pentosus, and L. paraplantarum by recA gene sequence analysis and multiplex PCR assay with recA genederived primers. Appl. Environ. Microbiol. 67: 3450-3454 (2001) https://doi.org/10.1128/AEM.67.8.3450-3454.2001
  31. van de Guchte M, Serror P, Chervaux C, Smokvina T, Ehrlich SD, Maguin E. Stress responses in lactic acid bacteria. Antonie Van Leeuwenhoek. 82: 187-216 (2002) https://doi.org/10.1023/A:1020631532202
  32. McDonald LC, HP Fleming, HM Hassan. Acid tolerance of Leuconostoc mesenteroides and Lactobacillus plantarum. Appl. Environ. Microbiol. 56: 2120-2124 (1990)
  33. Chen P, Zhang Q, Dang H, Liu X, Tian F, Zhao J, Chen Y, Zhang H, Chen W. Screening for potential new probiotic based on probiotic properties and $\alpha$-glucosidase inhibitory activity. Food Control 35: 65-72 (2014) https://doi.org/10.1016/j.foodcont.2013.06.027
  34. Ramchandran L, Shah NP. Effect of exopolysaccharides and inulin on the proteolytic, angiotensin-I-converting enzyme-and a-glucosidaseinhibitory activities as well as on textural and rheological properties of low-fat yogurt during refrigerated storage. Dairy Sci. Technol. 89: 583-600 (2009) https://doi.org/10.1051/dst/2009039
  35. Lebeer S, Verhoeven TL, Francius G, Schoofs G, Lambrichts I, Dufrne Y, Vanderleyden J, de Keersmaecker SC. Identification of a gene cluster for the biosynthesis of a long, galactose-rich exopolysaccharide in Lactobacillus rhamnosus GG and functional analysis of the priming glycosyltransferase. Appl. Environ. Microbiol. 75: 3554-3563 (2009) https://doi.org/10.1128/AEM.02919-08
  36. Mathangi T, Prabhakaran P. DPPH free radical scavenging activity of the extracts of the aquatic fern Marsilea quadrifolia Linn. Int. J. Curr. Microbiol. App. Sci. 2: 534-536 (2013)
  37. Jeong SJ, Shim RS, Lee JS, Nam HS, Lee HG. Antioxidant and synergistic activities of fruit and vegetable concentrates. Korean J. Food Sci. Technol. 47: 240-245 (2015) https://doi.org/10.9721/KJFST.2015.47.2.240
  38. Aruoma OI, Cuppett SL. Antioxidant methodology: In vivo and in vitro concepts. The American Oil Chemists Society, Urbana, IL, USA (1997)
  39. In MJ, Kim HM, Jin HJ, Kim DC, Oh NS, Chae HJ. Production of a fermented Korean pear puree using a new strain Leuconostoc mesenteroides KACC 91495P isolated from kimchi. J. Appl. Biol. Chem. 53: 51-55 (2010). https://doi.org/10.3839/jabc.2010.009
  40. Heo J, Lee CM, Park MK, Jeong DY, Uhm TB. Isolation of indigenous Lactobacillus plantarum for malolactic fermentation. Korean J. Microbiol. 51: 169176 (2015)
  41. Curk MC, Hubert JC, Bringel F. Lactobacillus paraplantarum sp. nov., a new species related to Lactobacillus plantarum. Int. J. Syst. Evol Microbiol. 46: 595-598 (1996)
  42. Zanoni P, Farrow JA, Phillips BA, Collins MD. Lactobacillus pentosus (Fred, Peterson, and Anderson) sp. nov., nom. rev. Int. J. Syst. Evol Microbiol. 37: 339-341 (1987)
  43. Bringel F, Qune P, Tailliez P. Polyphasic investigation of the diversity within Lactobacillus plantarum related strains revealed two L. plantarum subgroups. System. Appl. Microbiol. 24: 561- 571 (2001) https://doi.org/10.1078/0723-2020-00061
  44. Ministy of Food and Drug Safety. Food raw material DB. Available from: http://www.foodsafetykorea.go.kr/portal/safefoodlife/foodMeterial/foodMeterialDB.do. Accessed Sep. 29, 2016.
  45. MFDS. Food standard codex. Ministry of Food and Drug Safety. Cheongju, Korea. pp. 5-18-4 (2012)
  46. Garcera G, Jose MA, Campos MA, Zuniga MA, Uruburu FE. Growth and metabolism of L-malic acid by Lactobacillus plantarum CECT 220 in a defined medium. J. food sci. 57: 778-780 (1992) https://doi.org/10.1111/j.1365-2621.1992.tb08096.x
  47. Tallon R, Bressollier P, Urdaci MC. Isolation and characterization of two exopolysaccharides produced by Lactobacillus plantarum EP56. Res. Microbiol. 154: 705-712 (2003) https://doi.org/10.1016/j.resmic.2003.09.006
  48. Virtanen T, Pihlanto A, Akkanen S, Korhonen H. Development of antioxidant activity in milk whey during fermentation with lactic acid bacteria. J. Appl. Microbiol. 102: 106115 (2006)
  49. Lee NK, Kim HW, Chang HI, Yun CW, Kim SW, Kang CW, Paik HD. Probiotic properties of Lactobacillus plantarum NK181 isolated from jeotgal, a Korean fermented food. Food Sci. Biotechnol. 15: 227-231 (2006)