DOI QR코드

DOI QR Code

Synthesis of zinc oxide nanoparticles via aqueous solution routes

수용액 합성법에 의한 ZnO 나노분말의 합성

  • Koo, Jin Heui (Department of Marine Equipments Engineering, Korea Maritime and Ocean University) ;
  • Yang, Jun Seok (Department of Marine Equipments Engineering, Korea Maritime and Ocean University) ;
  • Cho, Soo Jin (Department of Marine Equipments Engineering, Korea Maritime and Ocean University) ;
  • Lee, Byeong Woo (Department of Marine Equipments Engineering, Korea Maritime and Ocean University)
  • 구진희 (한국해양대학교 조선기자재공학과) ;
  • 양준석 (한국해양대학교 조선기자재공학과) ;
  • 조수진 (한국해양대학교 조선기자재공학과) ;
  • 이병우 (한국해양대학교 조선기자재공학과)
  • Received : 2016.09.27
  • Accepted : 2016.10.07
  • Published : 2016.10.31

Abstract

ZnO nanoparticles were synthesized by aqueous preparation routes of a precipitation and a hydrothermal process. In the processes, the powders were formed by mixing aqueous solutions of Zn-nitrate hexahydrate ($Zn(NO_3)_2{\cdot}6H_2O$) with NaOH aqueous solution under controlled reaction conditions such as Zn precursor concentration, reaction pH and temperature. Single ZnO phase has been obtained under low Zn precursor concentration, high reaction pH and high temperature. The synthesized particles exhibited flakes (plates), multipods or rods morphologies and the crystallite sizes and shapes would be efficiently controllable by changing the processing parameters. The hydrothermal method showed advantageous features over the precipitation process, allowing the precipitates of single ZnO phase with higher crystallinity at relatively low temperatures below $100^{\circ}C$ under a wider pH range for the Zn precursor concentration of 0.1~1 M.

본 연구에서는 수용액 상에서 침전법과 수열합성법을 이용하여 나노크기의 ZnO 분말을 합성하였다. 두 합성방법 모두 출발원료로는 Zn-nitrate hexahydrate($Zn(NO_3)_2{\cdot}6H_2O$)와 NaOH 수용액을 사용하였고, 이들의 혼합용액에 합성조건 즉 반응 pH, 온도 및 Zn precursor의 몰 농도를 달리하여 ZnO 분말을 얻을 수 있었다. 두 합성법 모두에서 단일 상 ZnO는 낮은 Zn 농도 높은 pH 및 높은 온도 조건에서 합성되기 쉬웠다. 합성된 분말의 형상은 flake(plate), multipod 및 rod 형태로 합성 조건에 따라 그 형태의 조절이 가능하였다. 침전법에 비해 수열합성법은 $100^{\circ}C$ 이하인 비교적 낮은 합성온도에서도, 본 연구의 Zn 농도 전 구간(0.1~1 M)과 넓은 pH 범위에서 결정성이 우수한 ZnO 단일 상을 합성할 수 있는 장점을 보여주었다.

Keywords

References

  1. D.C. Look, "Recent advances in ZnO materials and devices", Mater. Sci. Eng. B 80 (2001) 383. https://doi.org/10.1016/S0921-5107(00)00604-8
  2. V. Srikant and D.R. Clarke, "On the optical band gap of zinc oxide", J. Appl. Phys. 83 (1998) 5447. https://doi.org/10.1063/1.367375
  3. A. Kolodziejczak-Radzimska and T. Jesionowski, "Zinc oxide from synthesis to application: A review", Materials 7 (2014) 2833. https://doi.org/10.3390/ma7042833
  4. A. Janotti and C.G. Van de Walle, "Fundamentals of zinc oxide as a semiconductor", Rep. Prog. Phys. 72 (2009) 126501. https://doi.org/10.1088/0034-4885/72/12/126501
  5. Z.L. Wang, "Zinc oxide nanostructures: growth, properties and applications", J. Phys.: Condens. Matter 16 (2004) R829. https://doi.org/10.1088/0953-8984/16/25/R01
  6. Y.J. Xing, Z.H. Xi, Z.Q. Xue, X.D. Zhang, J.H. Song, R.M. Wang, J. Xu, Y. Song, S.L. Zhang and D.P. Yu, "Optical properties of the ZnO nanotubes synthesized via vapor phase growth", Appl. Phys. Lett. 83 (2003) 1689. https://doi.org/10.1063/1.1605808
  7. W.I. Park, G.C. Yi, M.Y. Kim and S.J. Pennycook, "ZnO nanoneedles grown vertically on Si substrates by non-catalytic vapor-phase epitaxy", Adv. Mater. 14 (2002) 1841. https://doi.org/10.1002/adma.200290015
  8. Q. Zhang, C.S. Dandeneau, X. Zhou and G. Cao, "ZnO nanostructures for dye-sensitized solar cells", Adv. Mater. 21 (2009) 4087. https://doi.org/10.1002/adma.200803827
  9. S.Y. Bang, T.V. Khai, D.K. Oh, P. Maneeratanasarn, B.G. Choi, H. Ham, K.H. Kim and K.B. Shim, "Different morphologies of three dimensional ZnO structures synthesized by thermal evaporation method without a catalyst", J. Korea Cryst. Growth. Cryst. Technol. 23 (2013) 8. https://doi.org/10.6111/JKCGCT.2013.23.1.008
  10. S.W. Kim, "Metalorganic chemical vapor deposition of semiconducting ZnO thin films and nanostructures", J. Korea Cryst. Growth. Cryst. Technol. 16 (2006) 12.
  11. J. Liu, X. Huang, Y. Li, Q. Zhong and L. Ren, "Preparation and photoluminescence of ZnO complex structures with controlled morphology", Mater. Lett. 60 (2006) 1354. https://doi.org/10.1016/j.matlet.2005.11.056
  12. K. Nejati, Z. Rezvani and R. Pakizevand, "Synthesis of ZnO nanoparticles and investigation of the ionic template effect on their size and shape", Int. Nano Lett. 1 (2011) 75.
  13. K. Byrappa and M. Yoshimura, "Handbook of hydrothermal technology", (Noyes Publications/William Andrew Publishing LLC, 2001) p. 1.
  14. W.L. Suchanek and R.E. Riman, "Hydrothermal synthesis of advanced ceramic powders", Adv. Sci. Tech. 45 (2006) 184. https://doi.org/10.4028/www.scientific.net/AST.45.184
  15. W. Stumm and J. Morgan, "Aquatic chemistry" (Wiley-Interscience, New York, 1995) p. 1002.
  16. S. Yamabi and H. Imai, "Growth conditions for wurtzite zinc oxide films in aqueous solutions", J. Mater. Chem. 12 (2002) 3773. https://doi.org/10.1039/b205384e