DOI QR코드

DOI QR Code

Synthesis of the orange color pigment in the system of TiO2-SnO-ZnO by solid state reaction

고상반응법에 의한 TiO2-SnO-ZnO의 주황 안료 합성에 관한 연구

  • Kim, Soomin (Korea Institute of Ceramic Engineering and Technology) ;
  • Kim, Ungsoo (Korea Institute of Ceramic Engineering and Technology) ;
  • Cho, Woo Seok (Korea Institute of Ceramic Engineering and Technology)
  • 김수민 (한국세라믹기술원 이천분원 도자세라믹센터) ;
  • 김응수 (한국세라믹기술원 이천분원 도자세라믹센터) ;
  • 조우석 (한국세라믹기술원 이천분원 도자세라믹센터)
  • Received : 2016.09.27
  • Accepted : 2016.10.07
  • Published : 2016.10.31

Abstract

In this study, new composition of orange color pigment was developed by replacing formerly used lead and chromium with environment-friendly elements. $TiO_2-SnO-ZnO$ composite was synthesized using the solid state reaction under the reducing atmosphere with the LPG and air mixture gas. The synthesized pigments were characterized by spectrophotometer, X-ray Diffraction (XRD), Scanning Electron Microscopy (SEM) and X-ray Photoelectron Spectroscopy (XPS). The colorimetric analysis of pigments exhibited color values ranging from yellow to orange-red. Five different crystalline phases were formed after the heat treatment for 4 and 6 hours. The color of pigments was strongly influenced by the crystalline structure of $SnO_2$, having either cubic or tetragonal structure. The oxidation state study of elements revealed that the color of pigment is getting close to rYR with the increase of $Sn^{4+}$ ratio.

본 연구에서는 납이나 크롬이 함유되지 않은 친환경적인 물질의 새로운 주황 무기 안료를 개발하고자 하였다. 고상반응법을 이용하여 LPG와 Air를 이용한 환원분위기에서 $TiO_2-SnO-ZnO$계 주황색 무기 안료를 합성하였다. 합성 된 안료들의 특성을 분석하기 위하여 표색계 값인 $L^*a^*b^*$ 값을 측정 후, XRD를 이용하여 결정 상을 분석하였고, SEM을 이용하여 미세구조 관찰하였으며, XPS를 이용하여 원소들의 산화가 상태를 분석하였다. 고상 반응법으로 합성 후 열처리한 $TiO_2-SnO-ZnO$ 안료는 yellow에서 orange-red 사이의 색을 가진다. $TiO_2-SnO-ZnO$ 안료의 결정상 분석 결과, 5가지의 결정상이 혼재하는 것을 볼 수 있는데, $SnO_2$가 cubic과 tetragonal 구조 중 어떤 결정 구조를 가지는지가 발색의 가장 중요한 요인으로 작용하는 것을 확인하였다. XPS를 이용하여 원소들의 산화가 상태를 분석한 결과, $Sn^{4+}$의 비율이 높을수록 안료가 rYR에 가까운 색을 가지는 것을 확인할 수 있다.

Keywords

References

  1. C. Sandalinas, S. Ruiz-Moreno, A. Lopez-Gil and J. Miralles, "Experimental confirmation by Raman spectroscopy of a Pb-Sn-Sb triple oxide yellow pigment in sixteenth-century Italian pottery", J. Raman Spectrosc. 37 (2006) 1146. https://doi.org/10.1002/jrs.1580
  2. C. Gargori, S. Cerro, R. Calindo and G. Monros, "In situ synthesis of orange rutile ceramic pigments by nonconventional methods", Ceram. Int. 36 (2010) 23. https://doi.org/10.1016/j.ceramint.2009.06.013
  3. S. Novaconi and N. Vaszilcsin, "Inductive heating hydrothermal synthesis of titanium dioxide nanostructures", Mater. Lett. 95 (2013) 59. https://doi.org/10.1016/j.matlet.2012.12.083
  4. S.H. Kim, "Eco-friendly fabrication and characterization of high performance yellow pigment through the derivative and crystallization process", Pukyong National Univ. (2015).
  5. B.R. Son, "Synthesis and characteristics of high-temperature blue nano-sized inorganic pigments", Sungkyunkwan Univ. (2013).
  6. K.C. Lee, J.W. Yoon, J.H. Kim, K.T. Hwang and K.S. Han, "Preparation and characterization of $CoAl_2O_4$ blue ceramic nano pigments by attrition milling", J. Korean Cryst. Growth Cryst. Technol. 23 (2013) 255. https://doi.org/10.6111/JKCGCT.2013.23.5.255
  7. T.H. Kim, H.J. Hwang, J.H. Kim, K.T. Hwang and K.S. Han, "Effect of Bi and Zr addition on yellow colour properties of environment-friendly ceria-based pigments", J. Korean Cryst. Growth Cryst. Technol. 25 (2015) 153. https://doi.org/10.6111/JKCGCT.2015.25.4.153
  8. H. Giefers, F. Porsch and G. Wortmann, "Kinetics of the disproportionation of SnO", Solid State Ion. 176 (2005) 199. https://doi.org/10.1016/j.ssi.2004.06.006
  9. Carlos M. Campo, Jorge E. Rodriquez and Alfonso E. Ramires, "Thermal behavior of romarchite phase SnO in different atmospheres: a hypothesis about the phase transformation", J. Heliyon 2 (2016) 1.
  10. Hari Prasad Naidu and Anil V. Virkar, "Low-temperature $TiO_2-SnO_2$ phase diagram using the molten-salt method", J. Am. Ceram. Soc. 81 (1998) 2176.
  11. F.H. Dulin and D.E. Rase, "Phase equilibria in the system ZnO-$TiO_2$", J. Am. Ceram. Soc. 43 (1960) 125. https://doi.org/10.1111/j.1151-2916.1960.tb14326.x
  12. H.T. Kim and Y.H. Kim, "Titanium incorporation in $Zn_2TiO_4$ spinel ceramics", J. Am. Ceram. Soc. 84 (2001) 1081. https://doi.org/10.1111/j.1151-2916.2001.tb00793.x
  13. Budigi Lokesh, S. Kaleemulla and N. Madhusudhana Rao, "Synthesis and characterization of zinc titanates by solid state reaction", Int. J. Chemtech Res. 6 (2014) 1929.
  14. A. Fahlman, C. Nordling, G. Johansson and K. Hamrin, "Charge transfer in transition metal carbides and related compounds studied by ESCA", J. Phys. Chem. Solids 30 (1969) 1835. https://doi.org/10.1016/0022-3697(69)90252-2
  15. D. Borgmann, E. Hums, G. Hopfengartner, G. Wedler, G.W. Spitznagel and I. Rademacher, "XPS studies of oxidic model catalysts: Internal standards and oxidation numbers", J. Electron Spectros. Relat. Phenomena 63 (1993) 91. https://doi.org/10.1016/0368-2048(93)80042-K
  16. C.D. Wagner, J.F. Moulder, L.E. Davis and W.M. Riggs, "Handbook of x-ray photoelectron spectroscopy: a reference book of standard data for use in x-ray photoelectron spectroscopy", 4th ed., G.E. Muilenberg, Ed., (Perkin- Elmer Corporation, USA, 1979) p. 111.