DOI QR코드

DOI QR Code

DTMOS Schmitt Trigger Logic Performance Validation Using Standard CMOS Process for EM Immunity Enhancement

범용 CMOS 공정을 사용한 DTMOS 슈미트 트리거 로직의 구현을 통한 EM Immunity 향상 검증

  • Park, SangHyeok (College of Information and Communication Engineering, Sunkyunkwan University) ;
  • Kim, SoYoung (College of Information and Communication Engineering, Sunkyunkwan University)
  • 박상혁 (성균관대학교 정보통신대학) ;
  • 김소영 (성균관대학교 정보통신대학)
  • Received : 2016.07.06
  • Accepted : 2016.10.19
  • Published : 2016.10.31

Abstract

Schmitt Trigger logic is a gate level design method to have hysteresis characteristics to improve noise immunity in digital circuits. Dynamic Threshold voltage MOS(DTMOS) Schmitt trigger circuits can improve noise immunity without adding additional transistors but by controlling substrate bias. The performance of DTMOS Schmitt trigger logic has not been verified yet in standard CMOS process through measurement. In this paper, DTMOS Schmitt trigger logic was implemented and verified using Magna $0.18{\mu}m$ MPW process. DTMOS Schmitt trigger buffer, inverter, NAND, NOR and simple digital logic circuits were made for our verification. Hysteresis characteristics, power consumption, and delay were measured and compared with common CMOS logic gates. EM Immunity enhancement was verified through Direct Power Injection(DPI) noise immunity test method. DTMOS Schmitt trigger logics fabricated using CMOS process showed a significantly improved EM Immunity in 10 M~1 GHz frequency range.

슈미트 트리거 로직(Schmitt Trigger Logic)은 디지털 회로의 노이즈에 대한 내성을 향상시키기 위해 히스테리시스 특성을 보이는 게이트를 제안한 설계 방법이다. 슈미트 트리거 특성을 보이는 설계 방법 중 최근에 제안된 substrate bias를 조정하여 구현하는 Dynamic Threshold voltage MOS(DTMOS) 방법을 사용할 경우, 게이트 수를 늘이지 않고 내성을 향상 시킬 수 있는 설계방법이나, 범용 CMOS 공정에서 구현하여 시뮬레이션으로 예상하는 성능을 얻을 수 있는지는 검증되지 않았다. 본 연구에서는 $0.18{\mu}m$ CMOS 공정에서 DTMOS 설계 방법을 구현하여 히스테리시스 특성을 측정하여 검증하였다. DTMOS 슈미트 트리거 버퍼, 인버터, 낸드, 노어 게이트 및 간단한 디지털 로직 회로를 제작하였으며, 히스테리시스 특성, 전력 소모, 딜레이 등의 특성들을 관찰하고, 일반적인 CMOS 게이트로 구현된 회로와 비교하였다. 노이즈에 대한 내성이 향상되는 것을 Direct Power Injection(DPI) 실험을 통해 확인하였다. 본 논문을 통해 제작된 DTMOS 슈미트 트리거 로직은 10 M~1 GHz 영역에서 전자파 내성이 향상된 것을 확인할 수 있었다.

Keywords

References

  1. M. Ramdani, E. Sicard, A. Boyer, S. B. Dhia, J. J. Whalen, T. H. Hubing, M. Coenen, and O. Wada, "The electromagnetic compatibility of integrated circuits-past, present, and future", IEEE Trans. Electromagn. Compat., vol. 51, no. 1, pp. 78-100, Feb. 2009. https://doi.org/10.1109/TEMC.2008.2008907
  2. S. M. Kang, Leblebici Yusuf, CMOS Digital Integrated Circuits, 3/E. pp. 350-353, McGraw-Hill Education, 2003.
  3. I. M. Filanovsky, H. Baltes, "CMOS Schmitt trigger design", Circuits and Systems I: Fundamental Theory and Applications, IEEE Transactions on 41.1(1994): 46-49. https://doi.org/10.1109/81.260219
  4. C. Zhang, A. Stivastava, and P. K. Ajmera, "Low voltage CMOS Schmitt trigger circuits", Electronics Letters 39.24 (2003): 1696-1698. https://doi.org/10.1049/el:20031131
  5. K. S. Kim, S. Y. Kim, "Noise-immune design of Schmitt trigger logic gate using DTMOS for sub-threshold circuits", EMC Compo, 2013.
  6. Kim, Kyungsoo, SoYoung Kim, "Design of Schmitt trigger logic gates using DTMOS for enhanced electromagnetic immunity of subthreshold circuits", Electromagnetic Compatibility, IEEE Transactions on 57.5(2015): 963-972. https://doi.org/10.1109/TEMC.2015.2427992
  7. SangHyeok Park, Kyungsoo Kim, Hai Au Huynh, Soyeon Joo, and SoYoung Kim, "EM noise immunity enhancement using Schmitt trigger logic gates in CMOS process", to be published in URSI Asia-Pacific Radio Science Conference(URSI-AP-RASC 2016), IEEE, 2016.
  8. Su, Jiong-Guang, et al, "Improving the RF performance of 0.18 ${\mu}m$ CMOS with deep n-well implantation", IEEE Electron Device Letters 22.10(2001): 481-483. https://doi.org/10.1109/55.954918
  9. Raza, Ghulam Ahmad, and Rajesh Mehra, "Area and power efficient layout design of Schmitt trigger", Computer, Communication and Control(IC4), 2015 International Conference on. IEEE, 2015.
  10. M. Donato, F. Cremona, W. Jin, R. I. Bahar, W. Patterson, A. Zaslavsky, and J. Mundy, "A noise-immune subthreshold circuit design based on selective use of Schmitt-trigger logic", in Proc. Great Lakes Symp. VLSI, pp. 39-44, 2012.
  11. IEC 62132-4, "Ed.1: Integrated Circuit Measurements of Electromagnetic Immunity 150 kHz to 1 GHz", Part 4: Direct RF Power injection method(DPI).
  12. Huynh, Hai Au, et al, "Analysis of power transfer efficiency of standard integrated circuit immunity test methods", International Journal of Antennas and Propagation 2015, 2015.