DOI QR코드

DOI QR Code

Rotational Antenna based Clutter Imaging Algorithm in Helicopter Landing Mode

헬리콥터에 장착된 회전 안테나를 이용한 착륙지형의 이미지 생성 기법

  • Bae, Chang-Sik (Department of Electronics Convergence Engineering, Kwangwoon University) ;
  • Jeon, Hyeon-Mu (Department of Electronics Convergence Engineering, Kwangwoon University) ;
  • Kim, Jae-Hak (Ace Antenna Corp.) ;
  • Yang, Hoon-Gee (Department of Electronics Convergence Engineering, Kwangwoon University)
  • Received : 2016.06.28
  • Accepted : 2016.07.12
  • Published : 2016.10.31

Abstract

Helicopter-related collision accidents with structures mostly occur at landing, especially in a limited visibility environment, which necessitates some secondary equipment like a radar that can generate stationary clutter image. In this paper, we propose an algorithm that makes an image of stationary ground clutter in two dimensional range and azimuth angle domain. We present a mathematical model for the received signals from each clutter patch in the iso range ring and analyze their clutter and Doppler characteristics, assuming that a helicopter-borne radar has a rotational antenna. We propose a filter structure, which suppresses side lobe signal components while extracting a main lobe signal component, and suggest a solution for a problem stemmed from the filtering process. Finally, by conducting a simulation we show the performance of the suggested imaging algorithm on a two dimensional virtual scenario of the topographic clutter.

헬기 사고의 대부분은 시야가 제한된 상황에서 착륙 시 구조물과의 충돌에 의한 사고로 안전한 주행을 위해 레이더와 같은 보조 장비가 요구된다. 본 논문에서는 회전하는 안테나를 장착한 헬기 레이더가 착륙하는 과정에서 고정 클러터에 대한 거리-방위각 이미지를 얻는 알고리즘을 제시한다. 동일 거리에 위치한 각각의 클러터 패치로부터 수신되는 신호를 모델링하고 클러터 특성 및 도플러 특성을 분석한다. 부엽(side lobe) 성분을 억제하고 주 빔(main lobe) 신호성분을 얻기 위한 필터구조를 설계하고 이 과정에서 발생하는 문제점에 대한 해결책을 제시한다. 마지막으로 시뮬레이션에 의해 거리-방위각 도메인에서의 가상의 지형 시나리오를 생성한 후 제시한 알고리즘의 성능을 검증한다.

Keywords

References

  1. D. A. Aushermen, A. Kozma, J. L. Walker, H. M. Jones, and E. C. Poggio, "Developments in Radar Imaging," IEEE Transactions on Aerospace and Electronic Systems, vol. AES-20, no. 4, pp.363-400, July 1984. https://doi.org/10.1109/TAES.1984.4502060
  2. J. Wu, J. Yang, Y. Huang, and H. Wang, "Bistatic forward-looking SAR: Theory and challenges," in Proceeding of IEEE Radar Conference, California: CA, pp. 1-4, 2009.
  3. H. Cox, R. Zeskind, and M. Owen, "Robust adaptive beamforming," IEEE Transactions on Acoustics, Speech, and Signal Processing, vol. 35, no. 10, pp. 1365-1376, Oct. 1987. https://doi.org/10.1109/TASSP.1987.1165054
  4. M. A. Richards, "Pulsed Radar Data Acquisition," in Fundamentals of Radar Signal Processing, 2ed ed. New York, NY: McGraw-Hill, ch. 3, pp. 111, 2014.
  5. B. R. Mahafza, "Detection of Fluctuating Targets," in Radar Systems Analysis and Design Using Matlab, 3rd ed. Boca Raton, FL: McGraw-Hill, ch. 13, pp. 433, 2013.
  6. M. A. Richards, "Signal Models," in Fundamentals of Radar Signal Processing, 2ed ed. New York, NY: McGraw-Hill, ch. 2, pp. 87, 2014.