DOI QR코드

DOI QR Code

Distributed Transmit Power Control Algorithm Based on Flocking Model for Energy-Efficient Cellular Networks

에너지 효율적인 셀룰러 네트워크를 위한 플로킹 모델 기반 분산 송신전력제어 알고리즘

  • Choi, Hyun-Ho (Department of Electrical, Electronic and Control Engineering, Institute for Information Technology Convergence, Hankyong National University)
  • Received : 2016.08.12
  • Accepted : 2016.08.20
  • Published : 2016.10.31

Abstract

Most of the energy used to operate a cellular network is consumed by a base station (BS), and reducing the transmission power of a BS is required for energy-efficient cellular networks. In this paper, a distributed transmit power control (TPC) algorithm is proposed based on the flocking model to improve the energy efficiency of a cellular network. Just as each bird in a flock attempts to match its velocity with the average velocity of adjacent birds, in the proposed algorithm each mobile station (MS) in a cell matches its rate with the average rate of the co-channel MSs in adjacent cells by controlling the transmit power of its serving BS. Simulation results show that the proposed TPC algorithm follows the same convergence properties as the flocking model and also effectively reduces the power consumption at the BSs while maintaining a low outage probability as the inter-cell interference increases. Consequently, it significantly improves the energy efficiency of a cellular network.

셀룰러 네트워크를 운용하는데 드는 에너지의 대부분은 기지국에 의해서 소비되므로 에너지 효율적인 셀룰러 네트워크를 위하여 기지국의 송신 전력을 줄이는 것이 필요하다. 본 논문에서는 셀룰러 네트워크의 에너지 효율을 향상시키기 위한 목적으로 플로킹(flocking) 모델에 기반한 분산 송신전력제어 알고리즘을 제안한다. 새 무리에서 각각의 새가 자신의 속도를 인접한 이웃 새들의 평균 속도로 맞춰 날아가는 것과 같이, 제안 방안에서는 각 셀의 단말의전송률이 인접 셀의 같은 채널을 사용하는 단말의 평균 전송률과 같도록 서빙 기지국의 송신 전력을 제어한다. 모의실험 결과 제안한 분산 송신전력제어 알고리즘은 플로킹 모델과 같은 수렴 속성을 가지며, 셀 간 간섭이 증가함에 따라 낮은 아웃티지 확률을 유지하면서도 기지국의 전력 소모를 효과적으로 줄일 수 있음을 보여준다. 이를 통하여 제안 방안은 기지국 수가 20개 이상일 때 셀룰러 네트워크의 에너지 효율을 기존 방식 대비 두 배 이상 향상시킨다.

Keywords

References

  1. C.L. I, et al., "Toward green and soft: a 5G perspective," IEEE Commun. Mag., vol. 52, no. 2 pp. 66-73, Feb. 2014. https://doi.org/10.1109/MCOM.2014.6736745
  2. H. Choi and J. Lee, "A biologically inspired power control algorithm for energy-efficient cellular Networks," MDPI Energies, vol. 9, no. 3, pp. 1-16, Mar. 2016.
  3. Y. Chen, S. Zhang, S. Xu, and G.Y. Li, "Fundamental trade-offs on green wireless networks," IEEE Commun. Mag., vol. 49, no. 6, pp. 30-37, June 2011. https://doi.org/10.1109/MCOM.2011.5783982
  4. S. Das, H. Viswanathan, and G. Rittenhouse, "Dynamic load balancing through coordinated scheduling in packet data systems," in Proc. IEEE INFOCOM, pp. 786-796, 2003.
  5. Z. Niu, Y. Wu, J. Gong, and Z. Yang, "Cell zooming for cost-efficient green celular networks," IEEE Commun. Mag., vol. 48, no. 11, pp. 74-79, Nov. 2010.
  6. M.R. Javan and A.R. Sharafat, "Efficient and Distributed SINR-Based Joint Resource Allocation and Base Station Assignment in Wireless CDMA Networks," IEEE Trans. on Communications, vol. 59, no. 12, pp. 3388-3399, Dec. 2011. https://doi.org/10.1109/TCOMM.2011.111011.100589
  7. L. Belke, T. Kesselheim, A. M.C.A. Koster, and B. Vocking, "Comparative study of approximation algorithms and heuristics for SINR scheduling with power control," Theoretical Computer Science, vol. 553, pp. 64-73, Oct. 2014. https://doi.org/10.1016/j.tcs.2014.05.014
  8. P. Wang and P.Y. Kam, "Feedback Power Control with Bit Error Outage Probability QoS Measure on the Rayleigh Fading Channel," IEEE Trans. on Communications, vol. 61, no. 4, pp. 1621-1631, Apr. 2013. https://doi.org/10.1109/TCOMM.2013.020813.120124
  9. Y. Xi and E.M. Yeh, "Throughput Optimal Distributed Power Control of Stochastic Wireless Networks," IEEE/ACM Trans. on Networking, vol. 18, no. 4 pp. 1054-1066, Apr 2010. https://doi.org/10.1109/TNET.2009.2035919
  10. Y. Kwon, T. Hwang, and X. Wang, "Energy-Efficient Transmit Power Control for Multi-Tier MIMO HetNets," IEEE J. Sel. Areas Commun., vol. 33, no. 10, pp. 2070-2086, Oct. 2015. https://doi.org/10.1109/JSAC.2015.2435311
  11. H. Choi and J. Lee, "Bio-Inspired Transmission Power Control for Green Base Station in Wireless Cellular Networks," in Proc. International Conference on Future Information & Communication Engineering (ICFICE) 2016, Da Nang, Vietnam, pp. 86-90, June 2016.
  12. H. Choi, "Energy-Efficient Uplink Power Control Based on Flocking Model in Cellular Networks," J. KICS, vol. 41, no. 10, Oct. 2016.
  13. F. Cucker and S. Smale, "Emergent behavior in flocks," IEEE Trans. on Automatic Control, vol. 52, no. 5, pp. 852-862, May 2007. https://doi.org/10.1109/TAC.2007.895842
  14. 3GPP, Technical specification group radio access network; further advancements for E-UTRA physical layer aspects (release 9). TR 36.814 v9.0.0, Mar. 2010.