DOI QR코드

DOI QR Code

An Efficient 3D Measurement Method that Improves the Fringe Projection Profilometry

Fringe Projection Profilometry를 개선한 효율적인 3D 측정 기법

  • Kim, Ho-Joong (Department of Computer Engineering, KOREATECH) ;
  • Cho, Tai-Hoon (School of Computer Science and Engineering, KOREATECH)
  • Received : 2016.06.14
  • Accepted : 2016.07.04
  • Published : 2016.10.31

Abstract

As technologies evolve, diverse 3D measurement techniques using cameras and pattern projectors have been developed continuously. In 3D measurement, high accuracy, fast speed, and easy implementation are very important factors. Recently, 3D measurement using multi-frequency fringe patterns for absolute phase computation has been widely used in the fringe projection profilometry. This paper proposes an improved method to compute the object's absolute phase using the reference plane's absolute phase and phase difference between the object and the reference plane. This method finds the object's absolute phase by adding the difference between the reference plane's wrapped phase and the object's wrapped phase to the reference plane's absolute phase already obtained in the calibration stage. Through this method, there is no need to obtain multi-frequency fringe patterns about new object for the absolute phase computation. Instead, we only need the object's phase difference relative to the reference planes's phase in the measurement stage.

기술이 발전하면서 카메라를 통해 3D 측정을 하는 방법은 계속 발전되어왔고 최근에는 여러 주기의 fringe pattern을 이용한 측정 방법을 쓰고 있다. 본 논문에서는 여러 주기의 fringe pattern을 이용한 3D 측정 방법에 대한 기존 방법의 문제점을 제시하고, 이에 대한 해결 방안으로 기준면의 절대위상과 물체의 위상차를 이용한 물체의 절대위상을 구하는 방법을 제안한다. 이를 이용하면 새로운 물체에 대해서 매번 여러 주기의 fringe pattern을 조사하지 않고 물체의 절대위상을 얻을 수 있다. 따라서 제안하는 방법을 이용하면, 측정단계에서 취득하는 영상의 개수가 적기 때문에 보다 빠른 속도로 3D 측정을 할 수 있다. 실험을 통하여 제안하는 방법의 유용성을 보였다.

Keywords

References

  1. Z. Wang, D. A. Nguyen and J. C. Barnes, "Some practical considerations in fringe projection profilometry," Optics and Lasers in Engineering, vol. 48, no. 2, pp. 218-225, Feb. 2010. https://doi.org/10.1016/j.optlaseng.2009.06.005
  2. H. Du, Z. Wang, "Three-dimensional shape measurement with arbitrarily arranged fringe projection profilometry system," Optics Letters, vol. 32, no. 16, pp. 2438-2440, Aug. 2007. https://doi.org/10.1364/OL.32.002438
  3. W. Osten, W. Nadeborn, and P. Andra, "General hierarchical approach in absolute phase measurement," in Proceeding of the SPIE 2860, Denver: CO, pp. 2-13, July 1996.
  4. C. Reich, R. Ritter and J. Thesing, "3D shape measurement of complex objects by combining photogrammetry and fringe projection," Optical Engineering, vol. 39, pp. 224-231, Jan. 2000. https://doi.org/10.1117/1.602356
  5. K. L, "Spatiotemporal approach for real-time absolute shape measurement by use of projected fringes," Applied Optics, vol. 43, no. 15, pp. 3018-3027, May 2004. https://doi.org/10.1364/AO.43.003018
  6. H. Zhao, W. Chen, Y. Tan, "Phase-unwrapping algorithm for the measurement of three-dimensional object shapes," Applied Optics, vol. 33, no. 20, pp. 4497-4500, July 1994. https://doi.org/10.1364/AO.33.004497
  7. J. Li, L. G. Hassebrook, and C. Guan, "Optimized two-frequency phase-measuring-profilometry light-sensor temporal-noise sensitivity," Journal of the Optical Society of America A, vol. 20, no. 1, pp.106-115, Jan. 2003. https://doi.org/10.1364/JOSAA.20.000106