DOI QR코드

DOI QR Code

고온 어닐링 조건에 따른 FBG 센서의 내방사선 특성

Radiation Hardness Characteristics of Fiber Bragg Gratings on the High Temperature Annealing Condition

  • Kim, Jong-Yeol (Department of Nuclear Convergence Technology Development, Korea Atomic Energy Research Institute (KAERI)) ;
  • Lee, Nam-Ho (Department of Nuclear Convergence Technology Development, Korea Atomic Energy Research Institute (KAERI)) ;
  • Jung, Hyun-Kyu (Department of Nuclear Convergence Technology Development, Korea Atomic Energy Research Institute (KAERI))
  • 투고 : 2016.08.08
  • 심사 : 2016.08.29
  • 발행 : 2016.10.31

초록

본 논문에서는 KrF 레이저를 이용한 격자 공정 후 고온 어닐링 온도조건에 따른 감마방사선 영향을 분석하였다. 제작된 광섬유 브래그 격자는 게르마늄(Ge)이 첨가된 동일한 광섬유에 어닐링 온도를 달리하여 제작하였으며, $Co^{60}$ 감마선원을 이용하여 약 115 Gy/min의 선량률로 총선량 약 31 kGy 감마선을 조사하였다. 격자의 안정화를 위한 고온 어닐링 공정은 광섬유 브래그 격자의 방사선 민감도 변화에 영향을 주는 것으로 나타났다. 실험결과를 통하여, 각각 다른 온도(100, 150, $200^{\circ}C$)로 안정화시킨 광섬유 브래그 격자들은 고온에 노출될수록 방사선 민감도가 증가했으며, 어닐링 온도조건에 따라서 방사선에 의한 브래그 파장 변화는 2배 이상의 차이를 보였다.

In this study, we studied the gamma-radiation effect of fiber Bragg gratings (FBGs) on the high temperature annealing condition after grating inscription using a KrF UV laser (248 nm). The FBGs were fabricated in a different annealing temperature using the same commercial Ge-doped silica core fiber (SMF-28e) and exposed to gamma-radiation up to a dose of 31 kGy at the dose rate of 115 Gy/min. The high temperature annealing procedure for grating stabilization was applied to change the radiation sensitivity of the FBGs. According to the experimental data and analysis results, the gratings that were stabilized at different temperatures at 100, 150 and $200^{\circ}C$ have clearly shown that exposure to higher temperatures increases their radiation sensitivity. The radiation-induced Bragg wavelength shift (BWS) was shown a difference of up to about a factor of two depending on the annealing temperature conditions of the gratings.

키워드

참고문헌

  1. A. Gusarov, S. Vasiliev, O. Medvedkov, I. Mckenzie and F. Berghmans et. al., "Stabilization of Fiber Bragg Gratings Against Gamma Radiation," IEEE Transactions on Nuclear Science, vol. 55, no. 4, pp. 2205-2212, Aug. 2008. https://doi.org/10.1109/TNS.2008.2001038
  2. A. I. Gusarov, D. B. Doyle, N. K. Karafolas, F.Berghmans, "Fibers-Bragg gratings as a candidate technology for satellite communication payloads: radiation effects issues," Conference on Photonics for Space Environments VII, SPIE Proceedings, vol. 4134, pp. 253-260, Oct. 2000.
  3. S. J. Mihailov, "Fiber Bragg Grating Sensors for Harsh Environments," Sensors 2012, vol. 12, no. 2, pp. 1898-1918, Feb. 2012. https://doi.org/10.3390/s120201898
  4. A. Gusarov, B. Brichard, and D. N. Nikogosyan, "Gamma-radiation effects on Bragg gratings written by femtosecond UV laser in Ge-doped fibers," IEEE Transactions on Nuclear Science, vol. 57, no. 4, pp. 2024-2028, Aug. 2010. https://doi.org/10.1109/TNS.2009.2039494
  5. H. Henschel, S. K. Hoffgen, K. Krebber, J. Kuhnhenn and U. Weinand, "Influence of fiber composition and grating fabrication on the radiation sensitivity of fiber Bragg gratings," IEEE Transactions on Nuclear Science, vol. 55, no. 4, pp. 2235-2242, Aug. 2008. https://doi.org/10.1109/TNS.2008.2001039
  6. IEC, "Optical fibres-Guidance for nuclear radiation tests," Technical Report IEC/TR 62283, pp. 27-28, 2010.
  7. K. Krebber, H. Henschel and U. Weinand, "Fibre Bragg gratings as high dose radiation sensors?," Measurement Science and Technology, pp. 1095-1102, vol. 17, Apr. 2006. https://doi.org/10.1088/0957-0233/17/5/S26
  8. J. Y. Kim, N. H. Lee, H. K. Jung, "The study of radiation sensitivity on fiber Bragg grating written in photo-sensitive optical fibers," Journal of the Korea Institute of Information and Communication Engineering, pp. 2023-2025, vol. 18, no. 8, Aug. 2014. https://doi.org/10.6109/jkiice.2014.18.8.2023
  9. TIA/EIA Standard 455-64, Procedure for Measuring Radiation-Induced Attenuation in Optical Fibers and Optical Cables, TIA, 1998.