DOI QR코드

DOI QR Code

Sensor Fusion for Seamless Localization using Mobile Device Data

센서 융합 기반의 실내외 연속 위치 인식

  • Kim, Jung-yee (Department of Port Logistics System, TongMyong University)
  • Received : 2016.09.22
  • Accepted : 2016.10.06
  • Published : 2016.10.31

Abstract

Technology that can determine the location of individuals is required in a variety of applications such as location based control, a personalized advertising. Missing-child prevention and support for field trips, and applications such as push events based on the user's location is endless. In particular, the technology that can determine the location without interruption in the indoor and outdoor spaces have been studied a lot recently. Because emphasizing on accuracy of the positioning, many conventional research have constraints such as using of additional sensing devices or special mounting devices. The algorithm proposed in this paper has the purpose of performing the positioning only with standard equipment of the smart phone that has the most users. In this paper, sensor Fusion with GPS, WiFi Radio Map, Accelerometer sensor and Particle Filter algorithm is designed and implemented. Experimental results of this algorithm shows superior performance than the other compared algorithm. This could confirm the possibility of using proposed algorithm on actual environment.

개인의 위치를 확인할 수 있는 기술은 위치기반제어, 개인화된 광고 등 다양한 응용분야에서 요구된다. 미아발생 방지나 현장 학습을 위한 지원, 사용자의 위치에 따른 적절한 Push 이벤트 등 그 응용분야는 무궁무진하다. 기존의 많은 연구들이 위치 확인의 정확도에 비중을 두고 연구되어, 별도의 장비를 장착하거나 시설물에 특정 장치를 해야 하는 등의 제약 조건이 있었던 것과 달리 본 논문에서 제안한 알고리즘은 대부분의 사용자가 갖고 있는 스마트폰의 기본 사양만으로 위치 추적을 수행하는 것을 목적으로 하였다. 스마트 폰에 의해 수집 가능한 GPS와 WiFi RSS, 가속도계 센서 데이터를 파티클 필터를 적용하여 센서 융합을 실행하여 위치를 확인하는 알고리즘을 설계 구현하였고, 실험 결과, 사용자의 위치 확인 정확도가 다른 비교 알고리즘에 비해 우수한 성능을 보여, 해당 알고리즘의 실제 환경 사용 가능성을 확인할 수 있었다.

Keywords

References

  1. J. Hightower and G. Borriello, "Location systems for ubiquitous computing," Computers, vol. 34, no. 8, pp. 56-66, Aug. 2001.
  2. C. Laoudias, R. Pich, and C. G. Panayiotou, "Device self-calibration in location systems using signal strength histograms," Journal of Location Based Services, vol. 7, no. 3, pp. 165-181, Aug. 2013. https://doi.org/10.1080/17489725.2013.816792
  3. A. Kushki, K. Plataniotis, and A. Venetsanopoulos, "Intelligent dynamic radio tracking in indoor wireless local area networks," IEEE Transactions on Mobile Computing, vol. 9, no. 3, pp. 405-419, Mar. 2010. https://doi.org/10.1109/TMC.2009.141
  4. K. H. Yun, D. J. Kim, and S. Y. Park, "Robust Location Tracking Using a Double Layered Particle Filter," Journal of Korean Institute of Information Scientiests and Engineers, vol 33, no. 12, pp. 1022-1030, Dec. 2006.
  5. M. Weyn, "Opportunistic Seamless Localization," Master's Thesis, Artesis University College of Antwerp, Mar. 2011.
  6. Q, Ladetto. "On foot navigation: Continuous step calibration using both complementary recursive prediction and adaptive Kalman filtering," Proceedings of the 13th International Technical Meeting of the Satellite Division of The Institute of Navigation (ION GPS 2000), pp. 1735-1740, Sep. 2000.
  7. Qi. H, Moore. J.B, "Direct Kalman filtering approach for GPS/INS integration," IEEE Trans. Aerosp. Electron. Syst, pp. 687-693, 2002.
  8. Z. Chen, H. Zou, H. Jiang, Q. Zhu, Y. C. Soh and L. Xie, "Fusion of WiFi, Smartphone Sensors and Landmarks Using the Kalman Filter for Indoor Localization," Sensors, vol. 15, no. 1, pp. 715-732, Jan. 2015.
  9. C. H Lim, Y. Wan, B. P. Ng, C. See, "A real-time indoor WiFi localization system utilizing smart antennas," IEEE Transactions on Consumer Electronics, vol. 53, pp. 618-622, May. 2007. https://doi.org/10.1109/TCE.2007.381737
  10. D. A. Kuban, L. Dong, R. Cheung, E. Strom, R. de Crevoisier, "Ultrasound-based localization," Seminars in Radiation Oncology. vol. 15, no. 3, pp. 180-191, Jul. 2005. https://doi.org/10.1016/j.semradonc.2005.01.009
  11. S. Gezic, Z. Tian, G. B. Giannakis, H. Kobayashi, A. F. Molisch, H. V. Poor, Z. Sahinoglu, "Localization via ultra-wideband radios: A look at positioning aspects for future sensor networks," IEEE Signal Processing Magazine, vol. 22, pp. 70-84, Jul. 2005.
  12. F. Evennou, F. Marx, "Advanced integration of WiFi and inertial navigation systems for indoor mobile positioning," EURASIP Journal on Advances in Signal Processing, pp. 164-164, Apr. 2006.
  13. H. Leppakoski, J. Collin, J. Takala, "Pedestrian navigation based on inertial sensors, indoor map, and WLAN signals," Journal of Signal Processing Systems. vol. 71, pp. 287-296, Jun. 2013. https://doi.org/10.1007/s11265-012-0711-5
  14. H. Wang, H. Len, A. Szabo, J. Bamberger, U. D.Hanebeck, "WLAN-based pedestrian tracking using particle filters and low-cost MEMS sensors," In Proceedings of the 2007 4th Workshop on Positioning, Navigation and Communication (WPNC'07), Hannover, Germany, pp. 1-7, Mar. 2007.
  15. Venusyu. (2015, November). Example of utilizing acceleration sensor and acceleration sensor readings [Internet]. Available: http://blog.naver.com/venusyu/220548449802.

Cited by

  1. Positional Tracking System Using Smartphone Sensor Information vol.6, pp.4, 2016, https://doi.org/10.33851/jmis.2019.6.4.265