DOI QR코드

DOI QR Code

Rhamnazin inhibits LPS-induced inflammation and ROS/RNS in raw macrophages

  • Received : 2016.07.05
  • Accepted : 2016.09.20
  • Published : 2016.10.31

Abstract

Purpose: The aim of this work was to investigate the beneficial effects of rhamnazin against inflammation, reactive oxygen species (ROS)/reactive nitrogen species (RNS), and anti-oxidative activity in murine macrophage RAW264.7 cells. Methods: To examine the beneficial properties of rhamnazin on inflammation, ROS/ RNS, and anti-oxidative activity in the murine macrophage RAW264.7 cell model, several key markers, including COX and 5-LO activities, $NO^{\cdot}$, $ONOO^-$, total reactive species formation, lipid peroxidation, $^{\cdot}O_2$ levels, and catalase activity were estimated. Results: Results show that rhamnazin was protective against LPS-induced cytotoxicity in macrophage cells. The underlying action of rhamnazin might be through modulation of ROS/RNS and anti-oxidative activity through regulation of total reactive species production, lipid peroxidation, catalase activity, and $^{\cdot}O_2$, $NO^{\cdot}$, and $ONOO^{\cdot}$ levels. In addition, rhamnazin down-regulated the activities of pro-inflammatory COX and 5-LO. Conclusion: The plausible action by which rhamnazin renders its protective effects in macrophage cells is likely due to its capability to regulate LPS-induced inflammation, ROS/ RNS, and anti-oxidative activity.

Keywords

References

  1. Kim YJ, Kim YA, Yokozawa T. Attenuation of oxidative stress and inflammation by gravinol in high glucose-exposed renal tubular epithelial cells. Toxicology 2010; 270(2-3): 106-111. https://doi.org/10.1016/j.tox.2010.02.001
  2. Kim YJ, Kim YA, Yokozawa T. Protection against oxidative stress, inflammation, and apoptosis of high-glucose-exposed proximal tubular epithelial cells by astaxanthin. J Agric Food Chem 2009; 57(19): 8793-8797. https://doi.org/10.1021/jf9019745
  3. Kim YJ, Kim YA, Yokozawa T. Pycnogenol modulates apoptosis by suppressing oxidative stress and inflammation in high glucosetreated renal tubular cells. Food Chem Toxicol 2011; 49(9): 2196-2201. https://doi.org/10.1016/j.fct.2011.06.012
  4. Hofmann B, Steinhilber D. 5-Lipoxygenase inhibitors: a review of recent patents (2010-2012). Expert Opin Ther Pat 2013; 23(7): 895-909. https://doi.org/10.1517/13543776.2013.791678
  5. Koskenkorva-Frank TS, Weiss G, Koppenol WH, Burckhardt S. The complex interplay of iron metabolism, reactive oxygen species, and reactive nitrogen species: insights into the potential of various iron therapies to induce oxidative and nitrosative stress. Free Radic Biol Med 2013; 65: 1174-1194. https://doi.org/10.1016/j.freeradbiomed.2013.09.001
  6. Li YH, Yan ZQ, Brauner A, Tullus K. Activation of macrophage nuclear factor-kappa B and induction of inducible nitric oxide synthase by LPS. Respir Res 2002; 3: 23.
  7. Pekarova M, Lojek A, Martiskova H, Vasicek O, Bino L, Klinke A, Lau D, Kuchta R, Kadlec J, Vrba R, Kubala L. New role for L-arginine in regulation of inducible nitric-oxide-synthase-derived superoxide anion production in RAW264.7 macrophages. ScientificWorldJournal 2011; 11: 2443-2457. https://doi.org/10.1100/2011/321979
  8. Ullah MF, Khan MW. Food as medicine: potential therapeutic tendencies of plant derived polyphenolic compounds. Asian Pac J Cancer Prev 2008; 9(2): 187-195.
  9. Malar DS, Devi KP. Dietary polyphenols for treatment of Alzheimer's disease--future research and development. Curr Pharm Biotechnol 2014; 15(4): 330-342. https://doi.org/10.2174/1389201015666140813122703
  10. Perez-Gregorio MR, Regueiro J, Simal-Gandara J, Rodrigues AS, Almeida DP. Increasing the added-value of onions as a source of antioxidant flavonoids: a critical review. Crit Rev Food Sci Nutr 2014; 54(8): 1050-1062. https://doi.org/10.1080/10408398.2011.624283
  11. Stoclet JC, Schini-Kerth V. Dietary flavonoids and human health. Ann Pharm Fr 2011; 69(2): 78-90. https://doi.org/10.1016/j.pharma.2010.11.004
  12. El-Gendy MM, Shaaban M, El-Bondkly AM, Shaaban KA. Bioactive benzopyrone derivatives from new recombinant fusant of marine Streptomyces. Appl Biochem Biotechnol. 2008; 150(1): 85-96. https://doi.org/10.1007/s12010-008-8192-5
  13. Yu Y, Cai W, Pei CG, Shao Y. Rhamnazin, a novel inhibitor of VEGFR2 signaling with potent antiangiogenic activity and antitumor efficacy. Biochem Biophys Res Commun 2015; 458(4): 913-919. https://doi.org/10.1016/j.bbrc.2015.02.059
  14. Cai H, Xie Z, Liu G, Sun X, Peng G, Lin B, Liao Q. Isolation, identification and activities of natural antioxidants from Callicarpa kwangtungensis Chun. PLoS One 2014; 9(3): e93000. https://doi.org/10.1371/journal.pone.0093000
  15. Martini ND, Katerere DR, Eloff JN. Biological activity of five antibacterial flavonoids from Combretum erythrophyllum (Combretaceae). J Ethnopharmacol 2004; 93(2-3): 207-212. https://doi.org/10.1016/j.jep.2004.02.030
  16. Huang YC, Guh JH, Cheng ZJ, Chang YL, Hwang TL, Lin CN, Teng CM. Inhibitory effect of DCDC on lipopolysaccharideinduced nitric oxide synthesis in RAW264.7 cells. Life Sci 2001; 68(21): 2435-2447. https://doi.org/10.1016/S0024-3205(01)01035-9
  17. Mosmann T. Rapid colorimetric assay for cellular growth and survival: application to proliferation and cytotoxicity assays. J Immunol Methods 1983; 65(1-2): 55-63. https://doi.org/10.1016/0022-1759(83)90303-4
  18. Paraidathathu T, de Groot H, Kehrer JP. Production of reactive oxygen by mitochondria from normoxic and hypoxic rat heart tissue. Free Radic Biol Med 1992; 13(4): 289-297. https://doi.org/10.1016/0891-5849(92)90176-H
  19. Kooy NW, Royall JA, Ischiropoulos H, Beckman JS. Peroxynitrite- mediated oxidation of dihydrorhodamine 123. Free Radic Biol Med 1994; 16(2): 149-156. https://doi.org/10.1016/0891-5849(94)90138-4
  20. Green LC, Wagner DA, Glogowski J, Skipper PL, Wishnok JS, Tannenbaum SR. Analysis of nitrate, nitrite, and [15N]nitrate in biological fluids. Anal Biochem 1982; 126(1): 131-138. https://doi.org/10.1016/0003-2697(82)90118-X
  21. Ewing JF, Janero DR. Microplate superoxide dismutase assay employing a nonenzymatic superoxide generator. Anal Biochem 1995; 232(2): 243-248. https://doi.org/10.1006/abio.1995.0014
  22. Buege JA, Aust SD. Microsomal lipid peroxidation. Methods Enzymol 1978; 52: 302-310.
  23. Aebi H. Catalase in vitro. Methods Enzymol 1984; 105: 121-126.
  24. Swaminathan P, Kalva S, Saleena LM. E-pharmacophore and molecular dynamics study of flavonols and dihydroflavonols as inhibitors against dihydroorotate dehydrogenase. Comb Chem High Throughput Screen 2014; 17(8): 663-673. https://doi.org/10.2174/1386207317666140321115128
  25. Luo C, Wang A, Wang X, Li J, Liu H, Wang M, Wang L, Lai D, Zhou L. A new proline-containing flavonol glycoside from Caragana leucophloea Pojark. Nat Prod Res 2015; 29(19): 1811-1819. https://doi.org/10.1080/14786419.2015.1007974
  26. Grisham MB. Methods to detect hydrogen peroxide in living cells: Possibilities and pitfalls. Comp Biochem Physiol A Mol Integr Physiol 2013; 165(4): 429-438. https://doi.org/10.1016/j.cbpa.2013.02.003
  27. Radak Z, Zhao Z, Goto S, Koltai E. Age-associated neurodegeneration and oxidative damage to lipids, proteins and DNA. Mol Aspects Med 2011; 32(4-6): 305-315. https://doi.org/10.1016/j.mam.2011.10.010
  28. Vendramini-Costa DB, Carvalho JE. Molecular link mechanisms between inflammation and cancer. Curr Pharm Des 2012; 18(26): 3831-3852. https://doi.org/10.2174/138161212802083707
  29. Bai K, Xu W, Zhang J, Kou T, Niu Y, Wan X, Zhang L, Wang C, Wang T. Assessment of free radical scavenging activity of dimethylglycine sodium salt and its role in providing protection against lipopolysaccharide-induced oxidative stress in mice. PLoS One 2016; 11(5): e0155393. https://doi.org/10.1371/journal.pone.0155393
  30. Firdous AP, Kuttan G, Kuttan R. Anti-inflammatory potential of carotenoid meso-zeaxanthin and its mode of action. Pharm Biol 2015; 53(7): 961-967. https://doi.org/10.3109/13880209.2014.950673
  31. Du Z, Liu H, Zhang Z, Li P. Antioxidant and anti-inflammatory activities of Radix Isatidis polysaccharide in murine alveolar macrophages. Int J Biol Macromol 2013; 58: 329-335. https://doi.org/10.1016/j.ijbiomac.2013.04.037

Cited by

  1. Therapeutic Effects of Hyaluronic Acid in Peritonitis-Induced Sepsis in Mice vol.54, pp.4, 2020, https://doi.org/10.1097/shk.0000000000001512
  2. Rhamnazin Ameliorates Traumatic Brain Injury in Mice via Reduction in Apoptosis, Oxidative Stress, and Inflammation vol.29, pp.1, 2016, https://doi.org/10.1159/000516927