DOI QR코드

DOI QR Code

Current Status and Future Research Directions of Separator Membranes for Lithium-Ion Rechargeable Batteries

리튬이차전지용 분리막 이해 및 최신 연구 동향

  • Kim, Jung-Hwan (School of Energy and Chemical Engineering, Ulsan National Institute of Science and Technology (UNIST)) ;
  • Lee, Sang-Young (School of Energy and Chemical Engineering, Ulsan National Institute of Science and Technology (UNIST))
  • 김정환 (울산과학기술원 에너지 및 화학공학부) ;
  • 이상영 (울산과학기술원 에너지 및 화학공학부)
  • Received : 2016.09.21
  • Accepted : 2016.09.25
  • Published : 2016.10.31

Abstract

Lithium-ion rechargeable batteries (LIBs) have garnered increasing attention with the rapid advancements in portable electronics, electric vehicles, and grid-scale energy storage systems which are expected to drastically change our future lives. This review describes a separator membrane, one of the key components in LIBs, in terms of porous structure and physicochemical properties, and its recent development trends are followed. The separator membrane is a kind of porous membrane that is positioned between a cathode and an anode. Its major functions involve electrical isolation between the electrodes while serving as an ionic transport channel that is filled with liquid electrolyte. The separator membranes are not directly involved in redox reactions of LIBs, however, their aforementioned roles significantly affect performance and safety of LIBs. A variety of research approaches have been recently conducted in separator membranes in order to further reinforce battery safeties and also widen chemical functionalities. This review starts with introduction to commercial polyolefin separators that are currently most widely used in LIBs. Based on this understanding, modified polyolefin separators, nonwoven separators, ceramic composite separators, and chemically active separators will be described, with special attention to their relationship with future research directions of advanced LIBs.

향후 우리 사회의 혁신적 변화를 가져올 휴대용 전자기기, 전기자동차 및 스마트 그리드 에너지 저장장치 등의 비약적인 발전에 따라, 그 전원으로서 리튬이차전지에 대한 관심이 더욱 증대하고 있다. 본 총설에서는, 리튬이차전지 핵심 소재 중 하나인 분리막에 대해 기공 구조 및 물리화학적 물성 관점에서 고찰하고, 이와 함께 최신 연구 동향을 소개하고자 한다. 리튬이차전지 분리막은 양극과 음극 사이에 위치하는 다공성 막으로서, 두 전극 간의 전기적 단락을 방지하고, 이온의 흐름을 가능하게 하는 기능을 갖는다. 분리막 자체는 전지 내 전기화학 반응에는 직접적으로 참여하지 않으나, 앞서 언급한 기능들에 의해 전지 성능 및 안전성에 큰 영향을 끼친다. 최근 들어, 이러한 분리막의 기본 특성 이외에, 전지 안전성 강화 및 금속 이온 흡착 등을 비롯한 다양한 기능 부여를 위한 노력들이 활발히 진행되고 있다. 본 총설에서는 현재 상업화된 폴리올레핀 분리막에 대한 이해를 토대로, 개질 폴리올레핀 분리막, 부직포 분리막, 세라믹 복합 분리막 및 화학 활성 분리막 등으로 대표되는 최신 분리막 기술들을, 차세대 전지 개발 방향과 관련 지어 기술하고자 한다.

Keywords

References

  1. M. Armand and J.-M. Tarascon, "Building better batteries", Nature, 451, 652 (2008). https://doi.org/10.1038/451652a
  2. B. Dunn, H. Kamath, and J.-M. Tarascon, "Electrical energy storage for the grid: A battery of choices", Science, 334, 928 (2011). https://doi.org/10.1126/science.1212741
  3. P. Arora and Z. Zhang, "Battery separators", Chem. Rev., 104, 4419 (2004). https://doi.org/10.1021/cr020738u
  4. S. S. Zhang, "A review on the separators of liquid electrolyte Li-ion batteries", J. Power Sources, 164, 351 (2007). https://doi.org/10.1016/j.jpowsour.2006.10.065
  5. X. Huang, "Separator technologies for lithium-ion batteries", J. Solid State Electrochem., 15, 649 (2011). https://doi.org/10.1007/s10008-010-1264-9
  6. H. Lee, M. Yanilmaz, O. Toprakci, K. Fu, and X. Zhang, "A review of recent developments in membrane separators for rechargeable lithium-ion batteries", Energy Environ. Sci., 7, 3857 (2014). https://doi.org/10.1039/C4EE01432D
  7. Y. M. Lee and B. Oh, "The role of microporous separator in lithium ion secondary battery", Membr. J., 7, 123 (1997).
  8. Y. M. Lee, C. H. Lee, H. B. Park, J. W. Rhim, S. Y. Ha, J. S. Kang, and S. Y. Nam, "Separators for Li-ion secondary batteries", Membr. J., 14, 263 (2004).
  9. G. Venugopal, J. Moore, J. Howard, and S. Pendalwar, "Characterization of microporous separators for lithium-ion batteries", J. Power Sources, 77, 34 (1999). https://doi.org/10.1016/S0378-7753(98)00168-2
  10. J. Saunier, F. Alloin, J. Y. Sanchez, and B. Barrie, "Plasticized microporous poly(vinylidene fluoride) separators for lithium-ion Batteries. I. swelling behavior of dense membranes with respect to a liquid electrolyte-characterization of the swelling equilibrium", J. Polym. Sci.: Part B: Polym. Phys., 42, 532 (2004). https://doi.org/10.1002/polb.10730
  11. W.-H. Seol, Y. M. Lee, and J.-K. Park, "Preparation and characterization of new microporous stretched membrane for lithium rechargeable battery", J. Power Sources, 163, 247 (2006). https://doi.org/10.1016/j.jpowsour.2006.02.076
  12. D. H. Yu, M. A. Jeong, J. W. Rhim, H. S. Byun, C. H. Jeong, Y. M. Lee, M. S. Seo, and S. Y. Nam, "Preparation and characterization of microporous PVdF membrane for Li-ion rechargeable battery", Membr. J., 17, 233 (2007).
  13. M. A. Jeong, D. H. Yu, M. J. Koh, J. W. Rhim, H. S. Byun, M. S. Seo, and S. Y. Nam, "Preparation and characterization of PVdF microporous membranes with PEG additive for rechargeble battery", Membr. J., 18, 84 (2008).
  14. W. Pu, X. He, L. Wang, C. Jiang, and C. Wan, "Preparation of PVDF-HFP microporous membrane for Li-ion batteries by phase inversion", J. Membr. Sci., 272, 11 (2006). https://doi.org/10.1016/j.memsci.2005.12.038
  15. A. Subramania, N. T. K. Sundaram, A. R. S, Priya, and G. V. Kumar, "Preparation of a novel composite micro-porous polymer electrolyte membrane for high performance Li-ion battery", J. Membr. Sci., 294, 8 (2007). https://doi.org/10.1016/j.memsci.2007.01.025
  16. D. H. Yu, M. A. Jeong, J. W. Rhim, H. S. Byun, H.-O. Yoo, J. M. Kim, M. S. Seo, and S. Y. Nam, "Preparation and characterization of PVdF-HFP microporous membranes for Li-ion rechargeable battery", Membr. J., 17, 359 (2007).
  17. S. S. Zhang, M. H. Ervin, K. Xu, and T. R. Jow, "Microporous poly(acrylonitrile-methyl methacrylate) membranes a separator of rechargeable lithium battery", Electrochim. Acta, 49, 3339 (2004). https://doi.org/10.1016/j.electacta.2004.02.045
  18. W. Pu, X. He, L. Wang, Z. Tian, C. Jiang, and C. Wan, "Preparation of P(AN-MMA) microporous membrane for Li-ion batteries by phase inversion", J. Membr. Sci., 280, 6 (2006). https://doi.org/10.1016/j.memsci.2006.05.028
  19. J. M. Ko, B. G. Min, D.-W. Kim, K. S. Ryu, K. M. Kim, Y. G. Lee, and S. H. Chang, "Thin-film type Li-ion battery, using a polyethylene separator grafted with glycidyl methacrylate", Electrochim. Acta, 50, 367 (2004). https://doi.org/10.1016/j.electacta.2004.01.127
  20. J. Y. Lee, Y. M. Lee, B. Bhattacharya, Y.-C. Nho, and J.-K. Park, "Separator grafted with siloxane by electron beam irradiation for lithium secondary batteries", Electrochim. Acta, 54, 4312 (2009). https://doi.org/10.1016/j.electacta.2009.02.088
  21. J. Y. Kim, Y. Lee, and D. Y. Lim, "Plasma-modified polyethylene membrane as a separator for lithium-ion polymer battery", Electrochim. Acta, 54, 3714 (2009). https://doi.org/10.1016/j.electacta.2009.01.055
  22. J. Y. Kim and D. Y. Lim, "Surface-modified membrane as a separator for lithium-ion polymer battery", Energies, 3, 866 (2010). https://doi.org/10.3390/en3040866
  23. D. H. Kim, H. I. Cho, B. S. Lee, B. P. Hong, S. Y. Lee, S. Y. Nam, M. S. Seo, J. W. Rhim, and H. S. Byun. "Studies on the secondary battery application of the surface fluorinated microporous PE separator membranes", Membr. J., 18, 75 (2008).
  24. M.-H. Ryou, Y. M. Lee, J.-K. Park, and J. W. Choi, "Mussel-inspired polydopamine-treated polyethylene separators for high-power Li-ion batteries", Adv. Mater., 23, 3066 (2011). https://doi.org/10.1002/adma.201100303
  25. L.-F. Fang, J.-L. Shi, B.-K. Zhu, and L.-P. Zhu, "Facile introduction of polyether chains onto polypropylene separators and its application in lithium ion batteries", J. Membr. Sci., 448, 143 (2013). https://doi.org/10.1016/j.memsci.2013.07.065
  26. B. Cheng, X. Jiao, and W. Kang, "Studies on grafting of acrylic acid onto polypropylene meltblown nonwovens induced by electron-beam preirradiation", J. Appl. Polym. Sci., 102, 4971 (2006). https://doi.org/10.1002/app.24841
  27. K. Singha, S. Maity, M. Singha, P. Paul, and D. P. Gon, "Effects of fiber diameter distribution of nonwoven fabrics on its properties", Int. J. Textile Sci., 1, 7 (2012).
  28. P. Kritzer, "Nonwoven support material for improved separators in Li-polymer batteries", J. Power Sources, 161, 1335 (2006). https://doi.org/10.1016/j.jpowsour.2006.04.142
  29. W. Yi, Z. Huaiyu, H. Jian, L. Yun, and Z. Shushu, "Wet-laid non-woven fabric for separator of lithium-ion battery", J. Power Sources, 189, 616 (2009). https://doi.org/10.1016/j.jpowsour.2008.09.078
  30. X. Huang, "Performance evaluation of a non-woven lithium ion battery separator prepared through a paper-making process", J. Power Sources, 256, 96 (2014). https://doi.org/10.1016/j.jpowsour.2014.01.080
  31. T. H. Kim, "Current R&D trend of nanofiber membranes", Membr. J., 22, 395 (2012).
  32. S. W. Choi, S. M. Jo, W. S. Lee, and Y.-R. Kim, "An electrospun poly(vinylidene fluroride) nanofibrous membrane and its battery application", Adv. Mater., 15, 2027 (2003). https://doi.org/10.1002/adma.200304617
  33. J. R. Kim, S. W. Choi, S. M. Jo, W. S. Lee, and B. C. Kim, "Characterization and properties of PVdF-HFP-based fibrous polymer electrolyte membrane prepared by electrospinning", J. Electrochem. Soc., 152, A295 (2005). https://doi.org/10.1149/1.1839531
  34. X. Li, G. Cheruvally, J.-K. Kim, J.-W. Choi, J.-H. Ahn, K.-W. Kim, and H.-J. Ahn, "Polymer electrolytes based on an electrospun poly(vinylidenefluoride-co-hexafluoropropylene) membrane for lithium batteries", J. Power Sources, 167, 491 (2007). https://doi.org/10.1016/j.jpowsour.2007.02.032
  35. T. H. Cho, M. Tanaka, H. Onishi, Y. Kondo, T. Nakamura, H. Yamazaki, S. Tanase, and T. Sakai, "Battery performances and thermal stability of polyacrylonitrile nano-fiber-based nonwoven separators for Li-ion battery", J. Power Sources, 181, 155 (2008). https://doi.org/10.1016/j.jpowsour.2008.03.010
  36. W. Jiang, Z. Liu, Q. Kong, J. Yao, C. Zhang, P. Han, and G. Cui, "A high temperature operating nanofibrous polyimide separator in Li-ion battery", Solid State Ionics, 232, 44 (2013). https://doi.org/10.1016/j.ssi.2012.11.010
  37. Y.-E. Miao, G.-N. Zhu, H. Hou, Y.-Y. Xia, and T. Liu, "Electrospun polyimide nanofiber-based nonwoven separators for lithium-ion batteries", J. Power Sources, 226, 82 (2013). https://doi.org/10.1016/j.jpowsour.2012.10.027
  38. J. Ding, Y. Kong, P. Li, and J. Yang, "Polyimide/poly(ethylene terephthalate) composite membrane by electrospinning for nonwoven separator for lithium-ion battery", J. Electrochem. Soc., 159, A1474 (2012). https://doi.org/10.1149/2.041209jes
  39. K. M. Kim, N.-G. Park, K. S. Ryu, and S. H. Chang, "Characteristics of PVdF-HFP/$TiO_{2}$ composite membrane electrolytes prepared by phase inversion and conventional casting methods", Electrochim. Acta, 51, 5636 (2006). https://doi.org/10.1016/j.electacta.2006.02.038
  40. J.-A. Choi, S. H. Kim, and D.-W. Kim, "Enhancement of thermal stability and cycling performance in lithium-ion cells through the use of ceramic-coated separators", J. Power Sources, 195, 6192 (2010). https://doi.org/10.1016/j.jpowsour.2009.11.020
  41. H.-S. Jeong and S.-Y. Lee, "Closely packed $SiO_{2}$ nanoparticles/poly(vinylidene fluoride-hexafluoropropylene) layers-coated polyethylene separators for lithium-ion batteries", J. Power Sources, 196, 6716 (2011). https://doi.org/10.1016/j.jpowsour.2010.11.037
  42. A. C. Lopes, R. Goncalves, C. M. Costa, A. M. Fonseca, G. Botelho, I. C. Neves, and S. Lanceros-Mendez, "Effect of zeolite content in the electrical, mechanical and thermal degradation response of poly(vinylidene fluoride)/NaY zeolite composites", J. Nanosci. Nanotechnol., 12, 6804 (2012). https://doi.org/10.1166/jnn.2012.4574
  43. J. Nunes-Pereira, C. M. Costa, R. E. Sousa, A. V. Machado, M. M. Silva, and S. Lanceros-Méndez, "Li-ion battery separator membranes based on barium titanate and poly(vinylidene fluoride-co-trifluoroethylene): filler size and concentration effects", Electrochim. Acta, 117, 276 (2014). https://doi.org/10.1016/j.electacta.2013.11.122
  44. E.-S. Choi and S.-Y. Lee, "Particle size-dependent, tunable porous structure of a $SiO_{2}$/poly(vinylidene fluoride-hexafluoropropylene)-coated poly(ethylene terephthalate) nonwoven composite separator for a lithium-ion battery", J. Mater. Chem., 21, 14747 (2011). https://doi.org/10.1039/c1jm12246k
  45. J.-R. Lee, J.-H. Won, J. H. Kim, K. J. Kim, and S.-Y. Lee, "Evaporation-induced self-assembled silica colloidal particle-assisted nanoporous structural evolution of poly(ethylene terephthalate) nonwoven composite separators for high-safety/high-rate lithium-ion batteries", J. Power Sources, 216, 42 (2012). https://doi.org/10.1016/j.jpowsour.2012.05.052
  46. J. W. Fergus, "Ceramic and polymeric solid electrolytes for lithium-ion batteries", J. Power Sources, 195, 4554 (2010). https://doi.org/10.1016/j.jpowsour.2010.01.076
  47. S. Augustin, V. Hennige, G. Hijrpel, and C. Hying, "Ceramic but flexible: new ceramic membrane foils for fuel cells and batteries", Desalination, 146, 23 (2002). https://doi.org/10.1016/S0011-9164(02)00465-4
  48. J.-H. Kim, J.-H. Kim, K.-H. Choi, H. K. Yu, J. H. Kim, J. S. Lee, and S.-Y. Lee, "Inverse opal-inspired, nanoscaffold battery separators: a new membrane opportunity for high-performance energy storage systems", Nano Lett., 14, 4438 (2014). https://doi.org/10.1021/nl5014037
  49. S.-J. Chun, E.-S. Choi, E.-H. Lee, J. H. Kim, S.-Y. Lee, and S.-Y. Lee, "Eco-friendly cellulose nanofiber paper-derived separator membranes featuring tunable nanoporous network channels for lithium-ion batteries", J. Mater. Chem., 22, 16618 (2012). https://doi.org/10.1039/c2jm32415f
  50. J.-H. Kim, J.-H. Kim, E.-S. Choi, H. K. Yu, J. H. Kim, Q. Wu, S.-J. Chun, S.-Y. Lee, and S.-Y. Lee, "Colloidal silica nanoparticle-assisted structural control of cellulose nanofiber paper separators for lithium-ion batteries", J. Power Sources, 242, 533 (2013). https://doi.org/10.1016/j.jpowsour.2013.05.142
  51. S. Yoo, J.-H. Kim, M. Shin, H. Park, J.-H. Kim, S.-Y. Lee, and S. Park, "Hierarchical multiscale hyperporous block copolymer membranes via tunable dual-phase separation", Sci. Adv., 1, e1500101 (2015).
  52. J.-M. Kim, C. Kim, S. Yoo, J.-H. Kim, J.-H. Kim, J.-M. Lim, S. Park, and S.-Y. Lee, "Agarose-biofunctionalized, dual-electrospun heteronano fiber mats: toward metal-ion chelating battery separator membranes", J. Mater. Chem. A, 3, 10687 (2015). https://doi.org/10.1039/C5TA02445E
  53. J.-H. Kim, J.-H. Kim, J.-M. Kim, Y.-G. Lee, and S.-Y. Lee, "Superlattice crystals-mimic, flexible/functional ceramic membranes: beyond polymeric battery separators", Adv. Energy Mater., 5, 1500954 (2015). https://doi.org/10.1002/aenm.201500954
  54. Y. T. Jeong, J. Ahn, and C. H. Lee, "Preparation and characterization of sulfonated poly (arylene ether sulfone) random copolymer-polyolefin porefilling separators with metal ion trap capability for Li-ion secondary battery", Membr. J., 26, 310 (2016). https://doi.org/10.14579/MEMBRANE_JOURNAL.2016.26.4.310
  55. H. Wu, D. Zhuo, D. Kong, and Y. Cui, "Improving battery safety by early detection of internal shorting with a bifunctional separator", Nat. Commun., 5, 5193 (2014). https://doi.org/10.1038/ncomms6193
  56. D. Lin, D. Zhuo, Y. Liu, and Y. Cui, "All-integrated bifunctional separator for Li dendrite detection via novel solution synthesis of a thermostable polyimide separator", J. Am. Chem. Soc., 138, 11044 (2016). https://doi.org/10.1021/jacs.6b06324