DOI QR코드

DOI QR Code

Simulation of CH4/CO2 Separation Process Using 2-Stage Hollow Fiber Membrane Modules

메탄/이산화탄소 2단 중공사 분리막 분리공정 전산모사

  • Cha, Gyoung Hwan (Dept. of Chem. Eng., College of Eng., Chungnam National University) ;
  • Kim, Joeng Hoon (Greenhouse Gas Separation and Recovery Group, Carbon Resource Institute, Korea Research Institute of Chemical Technology) ;
  • Lee, Yongtaek (Dept. of Chem. Eng., College of Eng., Chungnam National University)
  • 차경환 (충남대학교 응용화학공학과) ;
  • 김정훈 (한국화학연구원 탄소자원화연구소 온실가스분리회수연구그룹) ;
  • 이용택 (충남대학교 응용화학공학과)
  • Received : 2016.09.12
  • Accepted : 2016.10.07
  • Published : 2016.10.31

Abstract

A numerical analysis was performed for a separation of carbon dioxide and methane using 2-staged, membrane process where two polysulfone hollow fiber membrane modules were connected to provide both the methane concentration richer than 95% and the recovery higher than 90% using the recycled flows. The Compaq Visual Fortran 6.6 software was utilized for the numerical simulation. Both the methane concentration and the recovery % of methane could be successfully predicted as the function of the operating conditions. As the feed pressure, the methane concentration, and the flow rate increase, the methane concentration in a product is also found to increase and the recovery of methane is found to decrease.

메탄을 순도 95% 이상으로 분리, 회수하기 위하여 메탄에 대한 분리특성이 우수한 폴리설폰 중공사 분리막 모듈을 2단으로 연결하고 재순환 흐름을 이용하여 회수율을 90% 이상으로 유지할 수 있도록 공정을 설계하였다. 이렇게 설계된 2단 공정을 통한 메탄 분리 거동 특성을 이론적으로 예측하기 위하여 Compaq Visual Fortran 6.6 소프트웨어를 이용하여 수치 해석하였다. 개발한 프로그램을 사용하여 수치 해석을 수행한 결과 공정 변수에 따라 최종 메탄의 농도 변화에 미치는 영향을 고찰할 수 있었다. 공급 기체 압력과 분리막 길이와 공급측 메탄 농도 증가, 유량이 감소함에 따라 최종 생산물 내 메탄 농도 증가를 관찰할 수 있었으며, 메탄의 회수율은 감소함을 알 수 있었다.

Keywords

References

  1. H. J. Hahm, "Overall equipment effectiveness as a methodology for green house gas emission reduction", J. Korean Inst. Plant Eng., 19, 3 (2014).
  2. Act on Low Carbon Green Growth, Ministry of Environment, Korea (2010).
  3. IPCC Fifth Assessment Report, Table 8.7, Chapter 8, pp. 8-58, 7 (2013).
  4. 1. A. Tolis, A. Rentizelas, K. Aravossis, and I. Tatsiopoulos, "Electricity and combined heat and power from muncipal solid waste; theoretically optimal investment decision time and emissions trading implications", Waste Manage. Res., 28, 988 (2010)
  5. M. Harasimowicz, P. Orluk, G. Zakrzewska, and A. Chmielewski, "Application of polyimide membranes for biogas purification", J. Hazard. Mater., 44, 698 (2007).
  6. Clean Air Conservation Act, Ministry of Environment, Koera (2011).
  7. Urban Gas Business Act, Ministry of Trade, Industry and Energy, Koera (2009).
  8. U.S. Environmental Protection Agency, "Project technology option." LFG Energy Project Development Handbook. 9, 26 (2009).
  9. K. Berean, J. Z. Ou, M. Nour, K. Latham, C. Mcsweeney, D. Paull, A. Halim, S. Kentish, C. M. Doherty, A. J. Hill, and K. Kalantar-zadeh, "The effect of crosslinking temperature on the permeability of PDMS membranes : evidence of extraordinary $CO_{2}$ and $CH_{4}$ gas permeation", Sep. Pur. Technol., 122, 96 (2014). https://doi.org/10.1016/j.seppur.2013.11.006
  10. http://en.wikipedia.org/wiki/Countercurrent_exchange, April 15 (2014).
  11. S. M. Lee, Y. H. Seo, H. C. Kang, J. H. Kim, and Y. T. Lee, "Numerical analysis for separation of methane by hollow fiber membrane with cocurrent flow", Korean Chem. Eng. Res., 53, 295 (2015). https://doi.org/10.9713/kcer.2015.53.3.295
  12. J. S. Kim, C. I. Kong, B. R. Park, and J. H. Kim, "Membrane process using polysulfone hollow fiber membranes for vehicle fuel production from bio-methane mixture", Membr. J., 24, 213 (2014). https://doi.org/10.14579/MEMBRANE_JOURNAL.2014.24.3.213