DOI QR코드

DOI QR Code

Ions Removal of Contaminated Water with Radioactive Ions by Reverse Osmosis Membrane Process

방사성이온으로 오염된 물의 역삼투막공정을 이용한 이온제거

  • Shin, Do Hyoung (Department of Advanced Materials and Chemical Engineering, Hannam University) ;
  • Cheong, Seong Ihl (Department of Advanced Materials and Chemical Engineering, Hannam University) ;
  • Rhim, Ji Won (Department of Advanced Materials and Chemical Engineering, Hannam University)
  • 신도형 (한남대학교 대덕밸리캠퍼스 화공신소재공학과) ;
  • 정성일 (한남대학교 대덕밸리캠퍼스 화공신소재공학과) ;
  • 임지원 (한남대학교 대덕밸리캠퍼스 화공신소재공학과)
  • Received : 2016.10.18
  • Accepted : 2016.10.29
  • Published : 2016.10.31

Abstract

In this study, we have investigated the removal of the low level radioactive ions of Cs and I in water by the reverse osmosis (RO) process. The two RO modules produced in domestic region and the waste RO module after the cleaning process were selected. Then we compared removal performance of both Cs and I. The experiments are conducted by varying the concentration of feed, the pressure. As a results, it was confirmed that all three modules are higher I decontamination factor than Cs. And particularly, for the cleaned RO module, its decontamination factor of I was 1140. Since the results at low pressure condition were better than that at high pressure conditions, the use of the direct installation of RO modules on the tap water might be possible. In addition, it was confirmed that the waste RO module after cleaning process using EDTA, SBS and NaOH, increased the decontamination performance better than before cleaning, in particular, the recovery ratio after cleaning was 6.3% higher.

본 연구에서는 역삼투막공정을 이용하여 수용액 중 저준위 방사성이온인 세슘과 요오드 이온을 제거하는 실험을 수행하였다. 국내에서 생산되는 역삼투막모듈 두 가지와 그리고 폐모듈 세정한 후 세슘과 요오드 이온에 대한 제거성능을 비교하였다. 공급수의 농도와 압력을 달리하여 실험을 진행한 결과, 세 가지 모듈 모두 세슘에 비해 요오드의 제염계수가 높은 것을 알 수 있었으며, 특히, 세정한 모듈은 요오드에 대한 제염계수가 1140으로 확인되었다. 대체적으로 실험조건이 고압일 때보다 저압일 때 제염성능이 좋은 것으로 나타났으며 이는 저압조건에 가까운 압력을 갖는 수도수에 직접 모듈을 설치할 경우에도 사용이 가능하리라 판단되었다. 또한 EDTA와 SBS, NaOH, 마이크로버블 등을 사용하여 세정한 막의 제염성능이 세정 전의 제염성능보다 높아졌으며 저압, 저농도 조건에서 요오드에 대한 회수율이 세정 후에 6.3% 증가한 결과를 얻었다.

Keywords

References

  1. K. Scott, "Handbook of industrial membranes", pp. 489-497, Elsevier Advanced Technology, Oxford, UK (1995).
  2. J. Gilron, S. Belfer, P. Vaisanen, and M. Nystorm, "Effects of surface modification on antifouling and performance properties of reverse osmosis membranes", Desalination, 140, 167 (2001). https://doi.org/10.1016/S0011-9164(01)00366-6
  3. D. H. Hellmann, H. Rosenberger, and E. F. Tusel, "Saving of energy and cost in seawter desalination with speed controlled pumps", Desalination, 139, 7 (2001). https://doi.org/10.1016/S0011-9164(01)00290-9
  4. H. Yamamura, M. Kurihara, and K. Maeda, "Apparatus and method for multistage reverse osmosis separation" US Patent 6,187,200, February 13 (2001).
  5. C. E. Reid and E. J. Breton, "Water and ion flow across cellulosic membranes", J. Appl. Polym. Sci., 1, 133 (1959). https://doi.org/10.1002/app.1959.070010202
  6. S. Loeb and S. Sourirajan, "High flow porous membranes for separating water from saline solutions", US Patent 3,133,132 A, May 12 (1964).
  7. S. N. Gaeta, E. Petrocchi, E. Nergi, and E. Drioli, "Chlorine resistance of polypiperazineamide membranes and modules", Desalination, 83, 383 (1991). https://doi.org/10.1016/0011-9164(91)85112-8
  8. M. Kurihara, T. Uemura, Y. Himeshima, K. Ueno, and R. Bairinji, "Development of crosslinked aromatic polyamide composite reverse osmosis membrane, J. Chem. Soc. Jpn., 2, 97 (1994).
  9. N. W. Kim and S. S. Kim, "Recent trend of reverse osmosis membrane development", Membr. J., 10, 1 (2000).
  10. R. Singo, "Polyamide polymer solution behaviour under chlorination", J. Membr. Sci., 88, 285 (1994). https://doi.org/10.1016/0376-7388(94)87015-2
  11. E. H. Cho, S. I. Cheong, and J. W. Rhim, "Study on the fouling reduction of the RO membrane by the coating with an anionic polymer", Membr. J., 22, 481 (2012).
  12. N. M. Farhat, M. Staal, S. S. Bucs, M. C. M. Van Loosdrecht, and J. S. Vrouwenvelder, "Spatial heterogeneity of biofouling under different cross-flow velocities in reverse osmosis membrane systems", J. Mem. Sci., 520, 964 (2016). https://doi.org/10.1016/j.memsci.2016.08.065
  13. N. W. Kim and S. S. Kim, "The characteristics of seawater RO membrane for high recovery system", Membr. J., 12, 182 (2002).
  14. D. E. Sachit and J. N. Veenstra, "Analysis of reverse osmosis membrane performance during desalination of simulated brackish surface waters", J. Mem. Sci., 453, 136 (2014). https://doi.org/10.1016/j.memsci.2013.10.051
  15. I. H. Kim, E. H. Ji, J. W. Rhim, and S. I. Cheong, "Studies on the fouling reduction through the coating of poly (vinyl alcohol) on polyamide reverse osmosis membrane surfaces", Membr. J., 22, 272 (2012).
  16. N. W. Kim, "Study of surface properties on fouling resistance of reverse osmosis membranes", Membr. J., 12, 28 (2002).
  17. D. Rana, T. Matsuura, M. A. Kassim, and A. F. Ismail, "Radioactive decontamination of water by membrane processes-A review", Desalination, 321, 77 (2013). https://doi.org/10.1016/j.desal.2012.11.007
  18. D. H. Shin, J. W. Rhim, S. K. Park, C. H. Seo, and H. H. Park, "How to remove radioactive ions in radioactive waste", Membr. J., 25, 478 (2015). https://doi.org/10.14579/MEMBRANE_JOURNAL.2015.25.6.478