DOI QR코드

DOI QR Code

Physicochemical and Microbial Quality Characteristics of Garlic (Allium sativum L.) by Superheated Steam Treatment

과열증기 처리에 따른 마늘의 이화학적 및 미생물학적 품질 특성

  • Park, Chan-Yang (Division of Applied Life Science, Graduate School (Institute of Agriculture & Life Science), Gyeongsang National University) ;
  • Lee, Kyoyeon (Division of Applied Life Science, Graduate School (Institute of Agriculture & Life Science), Gyeongsang National University) ;
  • Kim, Ahna (Division of Applied Life Science, Graduate School (Institute of Agriculture & Life Science), Gyeongsang National University) ;
  • So, Seulah (Division of Applied Life Science, Graduate School (Institute of Agriculture & Life Science), Gyeongsang National University) ;
  • Rahman, M. Shafiur (Division of Applied Life Science, Graduate School (Institute of Agriculture & Life Science), Gyeongsang National University) ;
  • Choi, Sung-Gil (Division of Applied Life Science, Graduate School (Institute of Agriculture & Life Science), Gyeongsang National University)
  • 박찬양 (경상대학교 대학원 응용생명과학부) ;
  • 이교연 (경상대학교 대학원 응용생명과학부) ;
  • 김아나 (경상대학교 대학원 응용생명과학부) ;
  • 소슬아 (경상대학교 대학원 응용생명과학부) ;
  • 샤피어 라만 (경상대학교 대학원 응용생명과학부) ;
  • 최성길 (경상대학교 대학원 응용생명과학부)
  • Received : 2016.06.02
  • Accepted : 2016.06.10
  • Published : 2016.10.31

Abstract

The objectives of this study were to investigate the effects of superheated steam (SHS) treatment on the physicochemical and microbial properties of garlic. The garlic was treated by SHS at temperatures of 100, 150, 200, 250, 300, and $350^{\circ}C$ for 60 s. The moisture content of raw garlic was lower than that of SHS-treated garlic. The total thiosulfinate and pyruvate contents were dramatically reduced by SHS treatments. The antioxidant activities of garlic measured by ferric reducing/antioxidant power, 2,2-azinobis(3-ethylbenzothiazoline-6-sulfonic acid) diammonium salt radical scavenging assay, and total phenolics content decreased by SHS. The major volatile sulfur compounds of garlic such as diallyl disulfide, allicin, allyl sulfide, diallyl sulfide, and diallyl trisulfide were significantly reduced by SHS. The antimicrobial effects of raw garlic were stronger than those of SHS-treated garlic against three strains of bacteria, including Staphylococcus aureus, Escherichia coli, and Bacillus cereus. However, total aerobic bacteria in garlic were dramatically reduced by SHS from 8.6 to 2.9 log CFU/g. The results from the sensory evaluation show that SHS treatment of garlic above $200^{\circ}C$ provides better acceptably due to reduction of off-flavor and pungency of garlic. These results suggest that superheated steam treatment can used as an efficient process for reducing garlic off-flavor and pungency.

본 연구에서는 과열증기 처리온도에 따른 마늘의 불쾌취 제거 효과를 비롯한 이화학적, 미생물학적, 관능적 특성을 연구하고자 하였다. 과열증기 장치의 장점으로는 에너지 효율적이고 환경오염이 적으며, 식품 고유의 영양성분 변화가 적게 일어난다는 등의 장점을 가지고 있다. 마늘 특유의 불쾌취 및 매운맛 정도를 알아보는 total thiosulfinate, total pyruvate 함량에서는 비처리구보다 과열증기 처리한 모든 조건에서 감소하였고, 관능평가에서는 비처리구보다 과열증기 처리한 모든 조건에서 높은 점수를 획득한 것을 확인할 수 있었다. 또한, 마늘의 휘발성 향기물질 특성에서도 비처리구보다 과열증기 처리구에서 마늘 특유의 불쾌취를 생성하는 향기성분이 크게 저감화된 것을 확인할 수 있었다. 항산화 활성 및 총 페놀 화합물 함량에서는 비처리구가 과열증기 처리구보다 다소 높은 특성을 나타내었지만 과열증기 처리 시에도 FRAP는 77~93%, ABTS 라디칼 소거능은 89~97%, 총 페놀성 화합물 함량은 76~79%로 잔류하여 모든 항산화 활성에서 비교적 높게 유지되는 것을 확인할 수 있었다. 조직감 항목에서는 과열증기 처리구가 비처리구보다 경도가 다소 감소하는 것을 확인할 수 있었다. 항균성 특성에서는 비처리구가 과열증기 처리구보다 큰 항균성을 나타내었다. 모든 균주에서 비처리구는 10 mm 이상의 inhibition zone을 형성하였고, 과열증기 처리구에서는 1.0~10.0 mm의 inhibition zone을 형성하였다. 다음으로 일반세균, 대장균군, 효모 및 곰팡이 균수에서는 대장균군과 효모 및 곰팡이는 검출되지 않았지만, 일반세균수는 비처리구에서 8.69 log CFU/g이었으며 과열증기 처리 온도를 $100{\sim}350^{\circ}C$로 처리한 T100~T350 처리구들에서는 각각 5.65, 5.18, 5.15, 4.85, 4.75, 2.92 log CFU/g으로 대조구보다 3~6 log CFU/g의 수준이 감소한 균수를 확인하였다. 결과적으로 과열증기 처리는 마늘 특유의 불쾌취 및 매운맛을 저감화하며 다른 열처리에 비해 마늘의 영양물질 및 생리활성 물질이 높게 유지하고, 또한 미생물 제거 및 저감화에도 효과적이라고 생각한다.

Keywords

References

  1. Sohn KH, Lim JK, Kong UY, Park J, Noguchi A. 1996. High pressure inactivation of alliinase and its effects on flavor of garlic. Korean J Food Sci Technol 28: 593-599.
  2. Chung SK, Seog HM, Choi JU. 1994. Changes in volatile sulfur compounds of garlic (Allium sativum L.) under various drying temperatures. Korean J Food Sci Technol 26: 679-682.
  3. Shin DB, Seog HM, Lee YC. 1999. Flavor composition of garlic from different area. Korean J Food Sci Technol 31: 293-300.
  4. Iciek M, Kwiecien I, Wlodek L. 2009. Biological properties of garlic and garlic-derived organosulfur compounds. Environ Mol Mutagen 50: 247-265. https://doi.org/10.1002/em.20474
  5. Pittler MH, Ernst E. 2007. Clinical effectiveness of garlic (Allium sativum). Mol Nutr Food Res 51: 1382-1385. https://doi.org/10.1002/mnfr.200700073
  6. Stajner D, Milic N, Canadanovic-Brunet J, Kapor A, Stajner M, Popovic BM. 2006. Exploring Allium species as a source of potential medicinal agents. Phytother Res 20: 581-584. https://doi.org/10.1002/ptr.1917
  7. Horie T, Awazu S, Itakura Y, Fuwa T. 1992. Identified diallyl polysulfides from an aged garlic extract which products the membranes from lipid peroxidation. Planta Med 58: 468-469. https://doi.org/10.1055/s-2006-961517
  8. Barlow SM. 1990. Toxicological aspects of antioxidants used as food additives. In Food Antioxidants. Hudson BJF, ed, Elsevier, London, UK. p 253-307.
  9. Krest I, Glodek J, Keusgen M. 2000. Cysteine sulfoxides and alliinase activity of some Allium species. J Agric Food Chem 48: 3753-3760. https://doi.org/10.1021/jf990521+
  10. Lawson LD, Wang ZJ. 2001. Low allicin release from garlic supplements: a major problem due to the sensitivities of alliinase activity. J Agric Food Chem 49: 2592-2599. https://doi.org/10.1021/jf001287m
  11. Lagunas LLM, Castaigne F. 2008. Effect of temperature cycling on alliinase activity in garlic. Food Chem 111: 56-60. https://doi.org/10.1016/j.foodchem.2008.03.035
  12. Brodnitz MH, Pascale JV, Derslice LV. 1971. Flavor components of garlic extract. J Agric Food Chem 19: 273-275. https://doi.org/10.1021/jf60174a007
  13. Choi YH, Shim YS, Kim CT, Lee C, Shin DB. 2007. Characteristics of thiosulfinates and volatile sulfur compounds from branched garlic reacted with alliinase. Korean J Food Sci Technol 39: 600-607.
  14. Jeon MR, Kim MH, Kim MY, Kim MR. 2009. The effects of heat treatments and herb addition on flavor on garlic. J Korean Soc Food Sci Nutr 38: 105-110. https://doi.org/10.3746/jkfn.2009.38.1.105
  15. Yu TH, Wu CM, Ho CT. 1993. Volatile compounds of deep-oil fried, microwave-heated, and oven-baked garlic slices. J Agric Food Chem 41: 800-805. https://doi.org/10.1021/jf00029a023
  16. Kim KW, Kim YT, Kim M, Noh BS, Choi WS. 2014. Effect of high hydrostatic pressure (HHP) treatment on flavor, physicochemical properties and biological functionalities of garlic. LWT-Food Sci Technol 55: 347-354. https://doi.org/10.1016/j.lwt.2013.08.027
  17. Amatsubo T, Hagura Y, Suzuki K. 2006. The effect of superheated steam treatment on the quality of vegetable oils. Food Sci Technol Res 12: 114-118. https://doi.org/10.3136/fstr.12.114
  18. Tang Z, Cenkowski S. 2000. Dehydration dynamics of potatoes in superheated steam and hot air. Can Agric Eng 42: 43-49.
  19. Xiao HX, Bai JW, Sun DW, Gao ZJ. 2014. The application of superheated steam impingement blanching (SSIB) in agricultural products processing-A review. J Food Eng 132: 39-47. https://doi.org/10.1016/j.jfoodeng.2014.01.032
  20. Choi Y, Oh JH, Bae IY, Cho EK, Kwon DJ, Park HW, Yoon S. 2013. Changes in quality characteristics of seasoned soy sauce treated with superheated steam and high hydrostatic pressure during cold storage. Korean J Food Cook Sci 29: 387-398. https://doi.org/10.9724/kfcs.2013.29.4.387
  21. Kim OS, Lee DH, Chun WP. 2008. Eco-friendly drying technology using superheated steam. Korean Chem Eng Res 46: 258-273.
  22. Idrus NFM, Yang TA. 2012. Comparison between roasting by superheated steam by convection on changes in colour, texture and microstructure of peanut (Arachis hypogaea). Food Sci Technol Res 18: 515-524. https://doi.org/10.3136/fstr.18.515
  23. Wang TC, Chen BY, Shen YP, Wong JJ, Yang CC, Lin TC. 2012. Influence of superheated steaming and roasting on the quality and antioxidant activity of cooked sweet potatoes. Int J Food Sci Technol 47: 1720-1727. https://doi.org/10.1111/j.1365-2621.2012.03026.x
  24. Satou K, Takahashi Y, Yoshii Y. 2010. Effect of superheated steam treatment on enzymes related to lipid oxidation of brown rice. Food Sci Technol Res 16: 93-97. https://doi.org/10.3136/fstr.16.93
  25. AOAC. 1999. Official methods of analysis. 16th ed. Association of Official Analytical Chemists, Washington, DC, USA. p 124.
  26. Freeman GG, McBreen F. 1973. A rapid spectrophotometric method of determination of thiosulphinate in onion (Allium cepa) and its significance in flavour studies. Biochem Soc Trans 1: 1150-1152. https://doi.org/10.1042/bst0011150
  27. Schwimmer S, Weston WJ. 1961. Onion flavor and odor, enzymatic development of pyruvic acid in onion as a measure of pungency. J Agric Food Chem 9: 301-304. https://doi.org/10.1021/jf60116a018
  28. Biglari F, AlKarkhi AFM, Easa AM. 2008. Antioxidant activity and phenolic content of various date palm (Phoenix dactylifera) fruits from Iran. Food Chem 107: 1636-1641. https://doi.org/10.1016/j.foodchem.2007.10.033
  29. Kim DO, Jeong SW, Lee CY. 2003. Antioxidant capacity of phenolic phytochemicals from various cultivars of plums. Food Chem 81: 321-326. https://doi.org/10.1016/S0308-8146(02)00423-5
  30. Lim CL, Hong EJ, Noh BS, Choi WS. 2010. Effects of high hydrostatic pressure and pH on the reduction of garlic offflavor. Korean J Food Sci Technol 42: 533-540.
  31. Yoon IS. 2009. Sensitivity test on the food poisoning bacteria of the garlic extract. J Korea Contents Assoc 9: 339-349.
  32. Chun JY, Kwon BG, Lee SH, Min SG, Hong GP. 2013. Studies on physico-chemical properties of chicken meat cooked in electric oven combined with superheated steam. Korean J Food Sci An 33: 103-108. https://doi.org/10.5851/kosfa.2013.33.1.103
  33. Shin YK, Kyung KH. 2014. Cysteine reacts to form bluegreen pigments with thiosulfinates obtained from garlic (Allium sativum L.). Food Chem 142: 217-219. https://doi.org/10.1016/j.foodchem.2013.07.057
  34. Cavagnaro PF, Camargo A, Galmarini CR, Simon PW. 2007. Effect of cooking on garlic (Allium sativum L.) antiplatelet activity and thiosulfinates content. J Agric Food Chem 55: 1280-1288. https://doi.org/10.1021/jf062587s
  35. Park GY, Lee SJ, Im JG. 1997. Effects of green tea catechin on cytochrome P450, xanthine oxidase activities in liver and liver damage in streptozotocin induced diabetic rats. J Korean Soc Food Sci Nutr 26: 901-907.
  36. Shin JH, Choi DJ, Lee SJ, Cha JY, Sung NJ. 2008. Antioxidant activity of black garlic (Allium sativum L.). J Korean Soc Food Sci Nutr 37: 965-971. https://doi.org/10.3746/jkfn.2008.37.8.965
  37. Arnao MB. 2000. Some methodological problems in the determination of antioxidant activity using chromogen radicals: a practical case. Trends Food Sci Technol 11: 419-421. https://doi.org/10.1016/S0924-2244(01)00027-9
  38. Machizuki E, Yamamoto T, Suzuki S, Nakazawa H. 1996. Electrophoretic identification of garlic and garlic products. J AOAC Int 79: 1466-1470.
  39. Jeong JY, Woo KS, Hwang IG, Yoon HS, Lee YR, Jeong HS. 2007. Effects of heat treatment and antioxidant activity of aroma on garlic harvested in different cultivation areas. J Korean Soc Food Sci Nutr 36: 1637-1642. https://doi.org/10.3746/jkfn.2007.36.12.1637
  40. Small LVD, Bailey JH, Cavallito CJ. 1949. Comparison of some properties of thiosulfonates and thiosulfinates. J Am Chem Soc 69: 3565-3566.
  41. Kim BC, Hwang JY, Wu HJ, Lee SM, Cho HY, Yoo YM, Shin HH, Cho EK. 2012. Quality changes of vegetables by different cooking methods. Korean J Culinary Res 18: 40-53.

Cited by

  1. The Effects on Contents and True Retentions of Bioactive Compounds in Cooked Mushrooms by Superheated Steam vol.50, pp.8, 2016, https://doi.org/10.3746/jkfn.2021.50.8.799