DOI QR코드

DOI QR Code

FRACTIONAL POLYNOMIAL METHOD FOR SOLVING FRACTIONAL ORDER POPULATION GROWTH MODEL

  • 투고 : 2015.03.26
  • 발행 : 2016.10.31

초록

This paper presents an ecient fractional shifted Legendre polynomial method to solve the fractional Volterra's model for population growth model. The fractional derivatives are described based on the Caputo sense by using Riemann-Liouville fractional integral operator. The theoretical analysis, such as convergence analysis and error bound for the proposed technique has been demonstrated. In applications, the reliability of the technique is demonstrated by the error function based on the accuracy of the approximate solution. The numerical applications have provided the eciency of the method with dierent coecients of the population growth model. Finally, the obtained results reveal that the proposed technique is very convenient and quite accurate to such considered problems.

키워드

참고문헌

  1. S. Abbasbandy, S. Kazem, M. S. Alhuthali, and H. H. Alsulami, Application of the operational matrix of fractional-order Legendre functions for solving the time-fractional convection-diffusion equation, Appl. Math. Comput. 266 (2015), 31-40.
  2. R. L. Bagley and P. J. Torvik, Fractional calculus: a different approach to the analysis of viscoelastically damped structures, AIAA J. 21 (1983), no. 5, 741-748. https://doi.org/10.2514/3.8142
  3. D. Elliott, An asymptotic analysis of two algorithms for certain Hadamard finite part integrals, IMA J. Numer. Anal. 13 (1993), no. 3, 445-462. https://doi.org/10.1093/imanum/13.3.445
  4. S. Kazem, An integral operational matrix based on Jacobi polynomials for solving fractional-order differential equations, Appl. Math. Modell. 37 (2013), no. 3, 1126-1136. https://doi.org/10.1016/j.apm.2012.03.033
  5. S. Kazem, Exact solution of some linear fractional differential equations by Laplace transform, Int. J. Nonlinear Sci. 16 (2013), no. 1, 3-11.
  6. S. Kazem, S. Abbasbandy, and Sunil Kumar, Fractional-order Legendre functions for solving fractional order differential equations, Appl. Math. Model. 37 (2013), no. 7, 5498-5510. https://doi.org/10.1016/j.apm.2012.10.026
  7. N. A. Khan, A. Ara, and M. Jamil, Approximations of the nonlinear Volterra's population model by an ecient numerical method, Math. Methods Appl. Sci. 34 (2011), no. 14, 1733-1738. https://doi.org/10.1002/mma.1479
  8. N. A. Khan, A. Mahmood, N. A. Khan, and A. Ara, Analytical study of nonlinear fractional-order integrodifferential equation: revisit Volterra's population model, Int. J. Differ. Equ. 2012 (2012), Art. ID 845945, 8 pp. https://doi.org/10.1186/1687-1847-2012-8
  9. N. Liu and E.-B. Lin, Legendre wavelet method for numerical solutions of partial differential equations, Numer. Methods Partial Differential Equations 26 (2010), no. 1, 81-94. https://doi.org/10.1002/num.20417
  10. H. Marzban, S. M. Hoseini, and M. Razzaghi, Solution of Volterra's population model via block-pulse functions and Lagrange inerpolating polynomials, Math. Methods Appl. Sci. 32 (2009), no. 2, 127-134. https://doi.org/10.1002/mma.1028
  11. S. T. Mohyud-Din, A. Yildirim, and Y. Gulkanat, Analytical solution of Volterra's population model, J. King Saud Univ. Sci. 22 (2010), 247-250. https://doi.org/10.1016/j.jksus.2010.05.005
  12. S. Momani and R. Qaralleh, Numerical approximations and Pade's approximants for a fractional population growth model, Appl. Math. Model. 31 (2007), 1907-1914. https://doi.org/10.1016/j.apm.2006.06.015
  13. K. Parand, S. Abbasbandy, S. Kazem, and J. A. Rad, A novel application of radial basis functions for solving a model of first-order integro-ordinary differential equation, Commun. Nonlinear Sci. Numer. Simul. 16 (2011), no. 11, 4250-4258. https://doi.org/10.1016/j.cnsns.2011.02.020
  14. K. Parand, Z. Delafkar, N. Pakniat, A. Pirkhedri, and M. Kazemnasab Haji, Collocation method using sinc and rational Legendre functions for solving Volterra's population model, Commun. Nonlinear Sci. Numer. Simul. 16 (2011), no. 4, 1811-1819. https://doi.org/10.1016/j.cnsns.2010.08.018
  15. K. Parand and G. Hojjati, Solving Volterra's population model using new second derivative multistep methods, Am. J. Appl. Sci. 5 (2008), 1019-1022. https://doi.org/10.3844/ajassp.2008.1019.1022
  16. K. Parand, A. R. Rezaei, and A. Taghavi, Numerical approximations for population growth model by rational Chebyshev and Hermite functions collocation approach: a comparison, Math. Methods Appl. Sci. 33 (2010), no. 17, 2076-2086. https://doi.org/10.1002/mma.1318
  17. J. A. Rad, S. Kazem, M. Shaban, K. Parand, and A. Yildirim, Numerical solution of fractional differential equations with a Tau method based on Legendre and Bernstein polynomials, Math. Methods Appl. Sci. 37 (2014), no. 3, 329-342. https://doi.org/10.1002/mma.2794
  18. M. Ramezani, M. Razzaghi, and M. Dehghan, Composite spectral functions for solving Volterra's population model, Chaos Solitons Fractals 34 (2007), no. 2, 588-593. https://doi.org/10.1016/j.chaos.2006.03.067
  19. S. Z. Rida and A. M. Yousef, On the fractional order Rodrigues formula for the Legendre polynomials, Adv. Appl. Math. Sci. 10 (2011), no. 5, 509-518.
  20. FM. Scudo. Vito volterra and theoretical ecology, Theoret. Population Biol. 2 (1971), no. 1, 1-23. https://doi.org/10.1016/0040-5809(71)90002-5
  21. S. Momani and R. Qaralleh, Numerical approximations and Pade's approximants for a fractional population growth model, Appl. Math. Model. 31 (2007), 1907-1914. https://doi.org/10.1016/j.apm.2006.06.015
  22. J. Shen and T. Tang, High Order Numerical Methods and Algorithms, Chinese Science Press, Beijing, 2005.
  23. K. G. TeBeest, Numerical and analytical solutions of Volterra's population model, SIAM Rev. 39 (1997), no. 3, 484-493. https://doi.org/10.1137/S0036144595294850