DOI QR코드

DOI QR Code

Thermal and Uplift Histories of the Jurassic Granite Batholith in Southern Jeonju: Fission-track Thermochronological Analyses

전주 남부지역 쥬라기 화강암질 저반체의 지열사와 융기사: 피션트랙 열연대학적 해석

  • Shin, Seong-Cheon (Geologic Environment Division, Korea Institute of Geoscience and Mineral Resources)
  • 신성천 (한국지질자원연구원 지질환경연구본부)
  • Received : 2016.10.13
  • Accepted : 2016.10.25
  • Published : 2016.10.28

Abstract

Wide ranges of fission-track (FT) ages were obtained from the Jurassic granite batholith in Jeonju-Gimje-Jeongeup area, southwestern Okcheon Belt: sphene=158~70 Ma; zircon=127~71 Ma; apatite=72~46 Ma. Thermochronological analyses based on undisturbed primary cooling and reset or partially-reduced FT ages, and some track-length data reveal complicated thermal histories of the granite. The overall cooling of the batholith is characterized by a relatively rapid earlier-cooling (${\sim}20^{\circ}/Ma$) to $300^{\circ}C$ isotherm since its crystallization and a very slow later-cooling ($2.0{\sim}1.5^{\circ}/Ma$) through the $300^{\circ}C-200^{\circ}C-100^{\circ}C$ isotherms to the present surface temperature. It is indicated that the large part of Jurassic granitic body experienced different level of elevated temperatures at least above $170^{\circ}C$ (maximum>$330^{\circ}C$) by a series of igneous activities in late Cretaceous. Consistent FT zircon ages from duplicate measurements for two sites of later igneous bodies define their formation ages: e.g., quartz porphyry=$73{\pm}3Ma$; diorite=$73{\pm}2Ma$; rhyolite=$72{\pm}3Ma$; feldspar porphyry=$78{\pm}4Ma$ (total weighted average=$73{\pm}3Ma$). Intrusions of these later igneous bodies and pegmatitic dyke swarms might play important roles in later thermal rise over the study area including hot-spring districts (e.g., Hwasim, Jukrim, Mogyokri, Hoebong etc.). On the basis of an assumption that the latercooling of granite batholith was essentially controlled by the denudation of overlying crust, the uplift since early Cretaceous was very slow with a mean rate of ~0.05 mm/year (i.e., ~50 m/Ma). Estimates of total uplifts since 100 Ma, 70 Ma and 40 Ma to present-day are ~5 km, ~3.5 km and ~2 km, respectively. The consistent values of total uplifts from different locations may suggest a regional plateau uplift with a uniform rate over the whole granitic body.

옥천대 남서부인 전주-김제-정읍일대 쥬라기 화강암질 저반체로부터 구한 FT 연대는 넓은 범위에 걸쳐 나타난다: 스핀=158~70 Ma; 저콘=127~71 Ma; 인회석=72~46 Ma. 교란되지 않은 일차냉각 및 리셋 또는 부분감소된 FT 연대, 그리고 일부 트랙 길이 측정자료에 기반한 열연대학적 해석을 통해 화강암체가 겪은 복잡한 지열사를 규명하였다. 이 화강암체의 전체 냉각사는 정출 후 $300^{\circ}C$ 등온선까지의 비교적 빠른 전기 냉각(${\sim}20^{\circ}C/Ma$)과 $300^{\circ}C-200^{\circ}C-100^{\circ}C$ 등온선을 거쳐 현재 지표온도에 이르기까지의 매우 느린 후기 냉각($2.0{\sim}1.5^{\circ}C/Ma$)으로 특징지어진다. 이 쥬라기 화강암체의 많은 부분은 일련의 후기 백악기 화성활동에 의해 적어도 $170^{\circ}C$ 이상(최고 >$330^{\circ}C$)의 다양한 수준에 달하는 지열상승을 겪은 것으로 확인되었다. 다양한 후기 화성암체들의 두 지점으로부터 중복측정된 FT 저콘 연대의 일치된 결과는 그들의 생성시기를 잘 정의한다: 석영반암=$73{\pm}3Ma$; 섬록암=$73{\pm}2Ma$; 유문암=$72{\pm}3Ma$; 장석반암=$78{\pm}4Ma$ (전체 가중평균=$73{\pm}3Ma$). 이들 후기 화성암체와 페그마타이트 암맥군의 관입은 온천개발지역(화심, 죽림, 목욕리, 회봉 등)을 위시한 연구지역 내에서의 후기 지열상승에 주요 역할을 하였던 것으로 해석된다. 이 화강암 저반체의 후기냉각이 지표면의 침식-삭박에 따른 상대적 융기에 의해 근본적으로 규제되었다고 가정하면, 전기 백악기 이후의 융기는 연간 평균 약 0.05 mm (즉 백만 년에 약 50 m)의 매우 느린 속도로 진행되었다. 100 Ma, 70 Ma, 40 Ma를 기준으로 현재까지의 총융기량은 각각 5 km, 3.5 km, 2 km 정도로 추정된다. 여러 지점의 일정한 융기량은 암체 전체가 광역적으로 고르게 융기하였음을 지시한다.

Keywords

References

  1. Baag, C.E. and Kwon, B.D. (1994) Geophysical studies on major faults in the Ogcheon Fold Belt: Aeromagnetic data interpretation on the Jinan Sedimentary Basin, Korea. Korean Jour. Petroleum Geol., v.2, p.33-38.
  2. Chang, K.-H. (1985) Treatise on Geology of Korea. Mineumsa, 270p.
  3. Chang, T.W. and Lee, M.K. (1996) Fabric development of granite mylonites in the Soonchang shear zone: 2. Fabrics. Jour. Geol. Soc. Korea, v.32, p.500-508.
  4. Cheong, C.-S. and Kim, N (2012) Review of radiometric ages for Phanerozoic granitoids in southern Korean peninsula. Jour. Petrological Soc. Korea, v.21, p.173-192. https://doi.org/10.7854/JPSK.2012.21.2.173
  5. Cho, D.-L., Kee, W.-S. and Suzuki, K. (2007) CHIME monazite ages of Jurassic foliated granites in the vicinity of the Gangjin area, Korea. Jour. Petrological Soc. Korea, v.16, p.101-115.
  6. Cho, K.H., Takagi, H. and Suzuki K. (1999) CHIME monazite age of granitic rocks in the Sunchang shear zone, Korea: Timing of dextral ductile shear. Geosciences Journal, v.3, p.1-15. https://doi.org/10.1007/BF02910229
  7. Choo, S.H. and Kim, S.J. (1986) Rb-Sr age determinations on the Ryeongnam Massif (II): Granitic gneisses and gneissose granites in the southwestern Jirisan region. Korea Institute of Energy and Resources, Report KR-86-7, p.7-33.
  8. Cluzel, D., Cadet, J.P. and Lapierre, H. (1990) Geodynamics of Ogcheon belt (South Korea). Tectonophysics, p.183, v.41-56. https://doi.org/10.1016/0040-1951(90)90187-D
  9. Cluzel, D., Jolivet, L. and Cadet, J.P. (1991a) Early middle Paleozoic intraplate orogeny in the Ogcheon belt, South Korea: A new insight on the Paleozoic buildup of East Asia. Tectonics, v.10, p.1130-1151. https://doi.org/10.1029/91TC00866
  10. Cluzel, D., Lee, B.J. and Cadet, J.P. (1991b) Indosinian dextral ductile fault system and synkinematic plutonism in the southwest of the Ogcheon belt (South Korea). Tectonophysics, v.194, p.131-151. https://doi.org/10.1016/0040-1951(91)90277-Y
  11. Gleadow, A.J.W. and Duddy, I.R. (1981) A natural long-term annealing experiment for apatite. Nuclear Tracks, v.5, p.169-174. https://doi.org/10.1016/0191-278X(81)90039-1
  12. Harrison, T.M. and McDougall, I. (1980) Investigations of an intrusive contact, northwest Nelson, New Zealand: Thermal, chronological and isotopic constraints. Geochim. Cosmochim. Acta, v.44, p.1985-2003. https://doi.org/10.1016/0016-7037(80)90198-2
  13. Hong, M.S., Yoon, S. and Gil, Y.J. (1966) Geological Map of Korea (1:50,000), Galdam Sheet. Geological Survey of Korea.
  14. Jeon, K.S., Chang, T.W. and Lee, B.-J. (1991) On the properties and intersection feature of the ductile shear zone (Chonju shear zone) near Yongkwang-eub. Jour. Korean Inst. Mining Geol., v.24, p.435-446.
  15. Jeong, Y.-J., Cheong, C.-S., Park, C.-Y. and Shin, I.-H. (2008) Geochemistry, isotope properties and U-Pb sphene age of the Jeongeup foliated granite, Korea. Jour. Korean Earth Sci. Soc., v.29, p.539-550. https://doi.org/10.5467/JKESS.2008.29.7.539
  16. Jo, H.J., Park, K.-H. and Yi, K. (2013) SHRIMP U-Pb ages of the Namwon and Sunchang granites. Jour. Petrological Soc. Korea, v.22, p.197-208. https://doi.org/10.7854/JPSK.2013.22.2.197
  17. Kang, J.-H. (2010) The crenulation of Ogcheon metasedimentary rocks near the Ogcheon granite and the Honam shearing, Korea. Jour. Petrological Soc. Korea, v.19, p.157-165.
  18. Kee, W.-S. and Kim, J.H. (1992) Shear criteria in mylonites from the Soonchang Shear Zone, the Hwasun Coalfield, Korea. Jour. Geol. Soc. Korea, v.28, p.426-436.
  19. Kim, C.-B. and Turek, A. (1996) Advances in U-Pb zircon geochronology of Mesozoic plutonism in the southwestern part of Ryeongnam massif, Korea. Geochemical Journal, v.30, p.323-338. https://doi.org/10.2343/geochemj.30.323
  20. Kim, C.-B., Chang, H.-W. and Turek, A. (2003) U-Pb zircon ages and Sr-Nd-Pb isotopic compositions for Permian-Jurassic plutons in the Ogcheon belt and Ryeongnam massif, Korea: Tectonic implications and correlation with the China Qinling-Dabie belt and the Japan Hida belt. Island Arc, v.12, p.366-382. https://doi.org/10.1046/j.1440-1738.2003.00404.x
  21. Kim, J., Yi, K., Jeong, Y.-J., and Cheong, C.-S. (2011) Geochronological and geochemical constraints on the petrogenesis of Mesozoic high-K granitoids in the central Korean peninsula. Gondwana Research, v.20, p.608-620. https://doi.org/10.1016/j.gr.2010.12.005
  22. Kim, S.W., Oh, C.W, Choi, S.G., Ryu, I.-C. and Itaya, T. (2005) Ridge subduction-related Jurassic plutonism in and around the Okcheon Metamorphic Belt, South Korea, and implications for northeast Asian tectonics. International Geology Review, v.47, p.248-269. https://doi.org/10.2747/0020-6814.47.3.248
  23. Kim, Y.-J. (1986) Geochronology and petrogenesis on the older granitic rocks collected across the Ryeongnam Massif, Korea. Jour. Korean Inst. Mining Geol., v.19, p.151-162.
  24. Kim, Y.-J. and Lee, C.-S. (1988) The study on igneous rocks and their igneous activity in the Jangsoo-Unbong area. Jour. Geol. Soc. Korea, v.24, p.111-131.
  25. Kim, Y.-J., Kim, C.-B. and Dallmeyer, R.D. (1987) Petrographic study on mylonitic granite in the Unbong-Ayoung area. Korean Inst. Mining Geol., v.20, p.125-136.
  26. Kim, Y.-J., Kim, C.-B. and Park, J.-B. (1991) Petrochemistry and petrogenesis of foliated granites in the Honam Shear Zone, South Korea. Jour. Geol. Soc. Korea, v.27, p.52-63.
  27. Kim, Y.-J., Park, Y.-S. and Kang, S.-W. (1994) The study on geochronology and petrogenesis of foliated granites in the Honam Shear Zone, South Korea. Econ. Environ. Geol., v.27, p.247-261.
  28. Kwon, S.-T. and Ree, J.-H. (1997) A note on the age of the Honam Shear Zone. Jour. Geol. Soc. Korea, v.33, p.183-188.
  29. Lee, B.-J., Kim, D.H. and Jeon, K.-S. (1990) The characteristics of the ductile shear zone around Youngkwang-up in the SW part of Korean peninsula. Jour. Geol. Soc. Korea, v.26, p.304-312.
  30. Lee, B.-J., Kim, J.C., Kim, Y., Cho, D.-L., Choi, H.-I., Chun, H.Y. and Kim, B.C. (1997) Explanatory Note of the Gwangju Sheet (1:250,000). Korea Institute of Geology, Mining and Materials, KR-97(S)-1, 82p.
  31. Lee, B.-J., Lee, S.R. and Cho, D.-L. and Armstrong, R. (2001) Multiple ductile shearing during the Jurassic times in Jeonju ductile shear zone, Korea (abstract). Geological Society of Korea Annual Meeting Abstract and Programs, 116p.
  32. Lee, S.R., Lee, B.-J., Cho, D.-L., Kee, W.-S., Koh, H.J., Kim, B.C., Song, K.Y., Hwang, J.H. and Choi, P.Y. (2003) SHRIMP U-Pb zircon dating of the granitoids from the Jeonju shear zone: Implications for the timing of the Honam shear zone (abstract). Proceedings of the Annual Joint Conference, Mineralogical Society of Korea and Petrological Society of Korea, 55p.
  33. Lim, J.U., Ham, S.Y., Lee, B.D., Kwon, Y.I., Seong, K.S. and Kim, S.Y. (1990a) Report on Investigation of Hot-spring Boreholes in Jinan-Seongsu District (551 Yongpo-ri, Seongsu-myeon, Jinan-gun). Korea Institute of Energy and Resources, 90-8 (No.47), 57p.
  34. Lim, J.U., Ham, S.Y., Lee, B.D., Kwon, Y.I., Song, D.Y. and Seong, K.S. (1990b) Report on Investigation of Hot-spring Boreholes in Wanju Sanggwan District (427-4, 367-4 and 55-1 Jukrim-ri). Korea Institute of Energy and Resources, 90-10 (No.49), 128p.
  35. Lim, J.U., Lee, S.-G., Kim, H.C., Kim, G.B. and Yun, U. (1993) Report on Evaluation of Geothermal Resource in Jeongeup Mogyok District. Korea Institute of Energy and Resources, 93-24 (No.132), 186p.
  36. Na, C.-K. (1994) Genesis of Granitoid Batholiths of Okchon Zone, Korea and Its Implications for Crustal Evolution. Ph.D. thesis, University of Tsukuba, 154p.
  37. Na, C.-K., Lee, I.-S, and Chung, J.-I. (1997a) Petrogenetic study of the foliated granitoids in the Chonju and the Sunchang area (I) -in the light of petrochemical properties-. Jour. Korean Earth Sci. Soc., v.18, p.480-492.
  38. Na, C.-K., Lee, M.-S., Lee, I.-S., Park, H.-Y. and Kim, O.-B. (1997b) Hydrochemical and isotopic properties of the thermal spring water from Chonju Jukrim District, Korea. Econ. Environ. Geol., v.30, p.25-33.
  39. Naeser, C.W. and Faul, H. (1969) Fission track annealing in apatite and sphene. Geophysical Research, v.74, p.705-710. https://doi.org/10.1029/JB074i002p00705
  40. Nishimura, S. and Mogi, T. (1986) The interpretation of discordant ages of some granitic bodies. Jour. Geothermal Resource Soc. Japan, v.8, p.144-164.
  41. Otoh, S., Jwa, Y.-J., Nomura, R. and Sakai, H. (1999) A preliminary AMS (anisotropy of magnetic susceptibility) study of the Namwon granite, southwest Korea. Geosciences Journal, v.3, p.31-41. https://doi.org/10.1007/BF02910232
  42. Park, Y.S., Kim, S.W., Kee, W.-S., Jeong, Y.-J., Yi, K. and Kim, J. (2009) Middle tectono-magmatic evolution in the southwestern margin of the Gyeonggi Massif, South Korea. Geosciences Journal, v.13, p.217-231. https://doi.org/10.1007/s12303-009-0022-4
  43. Parrish, R.R. and Tirrul, R. (1989) U-Pb age of the Baltoro granite, northwest Himalaya, and implications for monazite U-Pb systematics. Geology, v.17, p.1076-1079. https://doi.org/10.1130/0091-7613(1989)017<1076:UPAOTB>2.3.CO;2
  44. Ree, J.-H., Kwon, S.-H., Park, Y., Kwon, S.-T. and Park, S.-H. (2001) Pretectonic and posttectonic emplacements of the granitoids in the south central Okcheon belt, South Korea: Implications for the timing of strike-slip shearing and thrusting. Tectonics, 20, 850-867. https://doi.org/10.1029/2000TC001267
  45. Sagong, H., Kwon, S.-T. and Ree, J.-H. (2005) Mesozoic episodic magmatism in South Korea and its tectonic implication. Tectonics, 24, TC5002, doi: 10.1029/2004TC001720.
  46. Scott, D.J. and St-Onge, M.R. (1995) Constrains on Pb closure temperature in titanite based on rocks from the Ungava orogen, canada: Implications for U-Pb geochronology and P-T-t path determination. Geology, v.23, p.1123-1126. https://doi.org/10.1130/0091-7613(1995)023<1123:COPCTI>2.3.CO;2
  47. Shimamura, S. (1925) Geological Atlas of Chosen (Korea), No.10, Jeonju-Jinan Sheet (scale 1:50,000), Geological Survey of Chosen.
  48. Shin, S.-C. (2012) Cooling and thermal histories of Cretaceous-Paleogene granites from different fault-bounded blocks, SE Korean peninsula: Fission-track thermochronological evidences. Jour. Petrological Soc. Korea, v.21, p.335-365. https://doi.org/10.7854/JPSK.2012.21.3.335
  49. Shin, S.-C. (2013) Revised fission-track ages and chronostratigraphies of the Miocene basin-fill volcanics and basements, SE Korea. Jour. Petrological Soc. Korea, v.22, p.83-115. https://doi.org/10.7854/JPSK.2013.22.2.083
  50. Shin, S.-C. and Nishimura, S. (1991) Direct comparison of zeta calibration constants for fission-track dating by double-checking of two irradiation facilities with different degrees of neutron flux thermalization. Chemical Geology, v.87, p.147-166.
  51. Shin, S.-C. and Nishimura, S. (1993) Thermal and uplift histories of Mesozoic granites in Southeast Korea: New fission track evidences. Jour. Petrological Soc. Korea, v.2, p.104-121.
  52. Son, C.M. (1969) On the crustal movements in Korea. Jour. Geol. Soc. Korea, v.5, p.167-210.
  53. Tagami, T., Ito, H. and Nishimura, S. (1990) Thermal annealing characteristics of spontaneous fission tracks in zircon. Chemical Geology, v.80, p.159-169.
  54. Turek, A. and Kim, C.-B. (1995) U-Pb zircon ages of Mesozoic plutons in the Damyang-Geochang area, Ryeongnam massif, Korea. Geochemical Journal, v.29, p.243-258. https://doi.org/10.2343/geochemj.29.243
  55. Wagner, G.A., and Reimer, G.B. (1972) Fission track tectonics: The tectonic interpretation of fission track apatite ages. Earth Planet. Sci. Lett., v.14, p.263-268. https://doi.org/10.1016/0012-821X(72)90018-0
  56. Won, C.K., Lee, M.W., Kim, K.H., Hong, Y.K., Woo, J.K. and Lee, J.M. (1990) The study on Cretaceous volcanism in the Sunchang Trough -Compare study between Kyeongsang Basin, Sunchang Trough and inner-zone of S-W Japan-. Jour. Geol. Soc. Korea, v.26, p.165-184.
  57. Yanai, S., Park, B.S. and Otoh, S. (1985) The Honam shear zone (South Korea): Deformation and tectonic implication in the Far East. Scientific Papers of College of the Arts and Sciences, University of Tokyo, v.35, p.181-210.
  58. Yin, A. and Nie. S. (1993) An indentation model for the north and south China collision and the development of the Tan-Lu and Honam fault systems, eastern Asia. Tectonics, v.12, p.801-813. https://doi.org/10.1029/93TC00313