DOI QR코드

DOI QR Code

Nonlinear Viscoelastic Behavior of Concentrated Xanthan Gum Systems in Large Amplitude Oscillatory Shear (LAOS) Flow Fields : Stress Waveform and Lissajous Pattern Analysis

대진폭 전단유동장에서 잔탄검 농후계의 비선형 점탄성 거동 연구: 응력파형 및 Lissajous 패턴 해석

  • Ahn, Hye-Jin (Department of Organic Material Science and Engineering, Pusan National University) ;
  • Kuk, Hoa-Youn (OE Development Team 3, NEXEN Tire R&D Center) ;
  • Lee, Ji-Seok (Department of Organic Material Science and Engineering, Pusan National University) ;
  • Song, Ki-Won (Department of Organic Material Science and Engineering, Pusan National University)
  • 안혜진 (부산대학교 공과대학 유기소재시스템공학과) ;
  • 국화윤 (넥센타이어 중앙연구소 OE개발3팀) ;
  • 이지석 (부산대학교 공과대학 유기소재시스템공학과) ;
  • 송기원 (부산대학교 공과대학 유기소재시스템공학과)
  • Received : 2016.09.25
  • Accepted : 2016.10.10
  • Published : 2016.10.31

Abstract

The objective of the present study is to phenomenologically characterize the nonlinear rheological behavior of concentrated xanthan gum systems in large amplitude oscillatory shear (LAOS) flow fields by means of stress waveform and Lissajous pattern analysis. Using an Advanced Rheometric Expansion System (ARES), the dynamic viscoelastic behavior of aqueous xanthan gum solutions with different concentrations has been experimentally investigated in LAOS flow conditions with a various combination of several fixed strain amplitudes and constant angular frequencies. The main findings obtained from this study are summarized as follows: (1) When a sinusoidal deformation with large strain amplitude is applied, a distorted and nonsinusoidal but symmetrical stress response waveform is observed with time. (2) A saw-tooth shaped stress signal detected at large strain amplitudes may arise from a unique microstructure of xanthan polymer chains. A small peak of stress wave appearing at the position of maximum and minimum stress represents a nonlinear viscous nature of concentrated xanthan gum systems in LAOS flow fields. (3) As an increase in polymer concentration, the shape of stress wave becomes sharper and more distorted. This trend may be explained by an increase in structural density. (4) As a decrease in angular frequency, the stress wave exhibits a more distorted shape and both of the maximum and minimum peaks of a saw-tooth shaped stress response becomes more dominant. (5) At relatively small strain amplitudes, the Lissajous patterns (stress versus strain rate loops) show an elliptical form and their normalized ones are coincident with each other. When larger strain amplitudes are applied, however, the Lissajous patterns are noticeably nonelliptical, and moreover, as the strain amplitude is further increased, the tips of loops become more pointed with exhibiting a characteristic "S" shape.

Keywords

References

  1. F. Garcia-Ochoa, V. E. Santos, J. A. Casas, and E. Gomez, "Xanthan Gum : Production, Recovery, and Properties", Biotechnol. Adv., 2000, 18, 549-579. https://doi.org/10.1016/S0734-9750(00)00050-1
  2. E. Pelletier, C. Viebke, J. Meadows, and P. A. Williams, "A Rheological Study of the Order-Disorder Conformational Transition of Xanthan Gum", Biopolymers, 2001, 59, 339-346. https://doi.org/10.1002/1097-0282(20011015)59:5<339::AID-BIP1031>3.0.CO;2-A
  3. M. Marcotte, A. R. Taherian-Hoshahili, and H. S. Ramaswamy, "Rheological Properties of Selected Hydrocolloids as a Function of Concentration and Temperature", Food Res. Int., 2001, 34, 695-703. https://doi.org/10.1016/S0963-9969(01)00091-6
  4. J. Ahmed and H. S. Ramaswamy, "Effect of High-Hydrostatic Pressure and Concentration on Rheological Characteristics of Xanthan Gum", Food Hydrocolloids, 2004, 18, 367-373. https://doi.org/10.1016/S0268-005X(03)00123-1
  5. R. Lapasin and S. Pricl, "Rheology of Industrial Polysaccharides: Theory and Applications", Aspen Publishers, Gaithersburg, MD, 1999.
  6. B. Urlacher and O. Noble in "Thickening and Gelling Agents for Food-Xanthan", A. Imeson Ed., Chapman & Hall, London, 1997, pp.284-311.
  7. J. N. BeMiller and K. C. Huber in "Food Chemistry-Carbohydrates", S. Damodaran, K. L. Parkin, and O. R. Fennema Eds., CRC Press, Boca Raton, 2008, pp.83-154.
  8. H. Schott in "Remington's Pharmaceutical Sciences-Colloidal Dispersions", A. R. Gennaro and G. D. Chase Eds., Mack, Philadelphia, 1985, pp.286-289.
  9. K. S. Kang and D. J. Pettit in "Industrial Gums", R. L. Whistler and J. N. Be Miller Eds., 3rd Ed., Academic Press, New York, 1993, pp.341-398.
  10. A. Palaniraj and V. Jayaraman, "Production, Recovery and Applications of Xanthan Gum by Xanthomonas Campestris", J. Food. Eng., 2011, 106, 1-12. https://doi.org/10.1016/j.jfoodeng.2011.03.035
  11. H. Y. Jang, K. Zhang, B. H. Chon, and H. J. Choi, "Enhanced Oil Recovery Performance and Viscosity Characteristics of Polysaccharide Xanthan Gum Solution", J. Ind. Eng. Chem., 2015, 21, 741-745. https://doi.org/10.1016/j.jiec.2014.04.005
  12. J. Huang, B. Yan, A. Faghihnejad, H. Xu, and H. Zeng, "Understanding Nanorheology and Surface Forces of Confined Thin Films", Korea-Aust. Rheol. J., 2014, 26, 3-14. https://doi.org/10.1007/s13367-014-0002-8
  13. P. J. Whitcomb and C. W. Macosko, "Rheology of Xanthan Gum", J. Rheol., 1978, 22, 493-505. https://doi.org/10.1122/1.549485
  14. W. E. Rochefort and S. Middleman, "Rheology of Xanthan Gum : Salt, Temperature, and Strain Effects in Oscillatory and Steady Shear Experiments", J. Rheol., 1987, 31, 337-369. https://doi.org/10.1122/1.549953
  15. K. C. Tam and C. Tiu, "Steady and Dynamic Shear Properties of Aqueous Polymer Solutions", J. Rheol., 1989, 33, 257-280. https://doi.org/10.1122/1.550015
  16. M. Milas, M. Rinaudo, M. Knipper, and J. L. Schuppiser, "Flow and Viscoelastic Properties of Xanthan Gum Solutions", Macromolecules, 1990, 23, 2506-2511. https://doi.org/10.1021/ma00211a018
  17. A. B. Rodd, J. J. Cooper-White, D. E. Dunstan, and D. V. Boger, "Gel Point Studies for Chemically-Modified Biopolymer Networks Using Small Amplitude Oscillatory Rheometry", Polymer, 2001, 42, 185-198. https://doi.org/10.1016/S0032-3861(00)00311-6
  18. N. B. Wyatt and M. W. Liberatore, "Rheology and Viscosity Scaling of the Polyelectrolyte Xanthan Gum", J. Appl. Polym. Sci., 2009, 114, 4076-4084. https://doi.org/10.1002/app.31093
  19. E. Choppe, F. Puaud, T. Nicolai, and L. Benyahia, "Rheology of Xanthan Solutions as a Function of Temperature, Concentration and Ionic Strength", Carbohydr. Polym., 2010, 82, 1228-1235. https://doi.org/10.1016/j.carbpol.2010.06.056
  20. L. Xu, G. Xu, T. Liu, Y. Chen, and H. Gong, "The Comparison of Rheological Properties of Aqueous Welan Gum and Xanthan Gum Solutions", Carbohydr. Polym., 2013, 92, 516-522. https://doi.org/10.1016/j.carbpol.2012.09.082
  21. A. Giboreau, G. Cuvelier, and B. Launay, "Rheological Behavior of Three Biopolymer/Water Systems with Emphasis on Yield Stress and Viscoelastic Properties", J. Texture Stud., 1994, 25, 119-137. https://doi.org/10.1111/j.1745-4603.1994.tb01321.x
  22. R. Pal, "Oscillatory, Creep and Steady Flow Behavior of Xanthan-Thickened Oil-in-Water Emulsions", AIChE J., 1995, 41, 783-794. https://doi.org/10.1002/aic.690410405
  23. L. Ma and G. V. Barbosa-Canovas, "Viscoelastic Properties of Xanthan Gels Interacting with Cations", J. Food Sci., 1997, 62, 1124-1128. https://doi.org/10.1111/j.1365-2621.1997.tb12227.x
  24. R. K. Richardson and S. B. Ross-Murphy, "Nonlinear Viscoelasticity of Polysaccharide Solutions. 2 : Xanthan Polysaccharide Solutions", Int. J. Biol. Macromol., 1987, 9, 257-264. https://doi.org/10.1016/0141-8130(87)90063-8
  25. T. Lim, J. T. Uhl, and R. K. Prudhomme, "Rheology of Self-Associating Concentrated Xanthan Solutions", J. Rheol., 1984, 28, 367-379. https://doi.org/10.1122/1.549757
  26. M. M. Santore and R. K. Prudhomme, "Rheology of a Xanthan Broth at Low Stresses and Strains", Carbohydr. Polym., 1990, 12, 329-335. https://doi.org/10.1016/0144-8617(90)90074-3
  27. K. W. Song, Y. S. Kim, and G. S. Chang, "Rheology of Concentrated Xanthan Gum Solutions : Steady Shear Flow Behavior", Fiber. Polym., 2006, 7, 129-138. https://doi.org/10.1007/BF02908257
  28. K. W. Song, H. Y. Kuk, and G. S. Chang, "Rheology of Concentrated Xanthan Gum Solutions : Oscillatory Shear Flow Behavior", Korea-Aust. Rheol. J., 2006, 18, 67-81.
  29. F. Garcia-Ochoa and E. Gomez, "Mass Transfer Coefficient in Stirred Tank Reactors for Xanthan Gum Solutions", Biochem. Eng. J., 1998, 1, 1-10. https://doi.org/10.1016/S1369-703X(97)00002-8
  30. J. A. Casas, V. E. Santos, and F. Garcia-Ochoa, "Xanthan Gum Production under Several Operational Conditions : Molecular Structure and Rheological Properties", Enzyme Microb. Technol., 2000, 26, 282-291. https://doi.org/10.1016/S0141-0229(99)00160-X
  31. J. S. Lee, Y. S. Kim, and K. W. Song, "Transient Rheological Behavior of Natural Polysaccharide Xanthan Gum Solutions in Start-Up Shear Flow Fields : An Experimental Study Using a Strain-Controlled Rheometer", Korea-Aust. Rheol. J., 2015, 27, 227-239. https://doi.org/10.1007/s13367-015-0023-y
  32. J. S. Lee and K. W. Song, "Time-Dependent Rheological Behavior of Natural Polysaccharide Xanthan Gum Solutions in Interrupted Shear and Step-Incremental/Reductional Shear Flow Fields", Korea-Aust. Rheol. J., 2015, 27, 297-307. https://doi.org/10.1007/s13367-015-0029-5
  33. K. Hyun, S. H. Kim, K. H. Ahn, and S. J. Lee, "Large Amplitude Oscillatory Shear as a Way to Classify the Complex Fluids", J. Non-Newt. Fluid Mech., 2002, 107, 51-65. https://doi.org/10.1016/S0377-0257(02)00141-6
  34. X. Li, S. Q. Wang, and X. Wang, "Nonlinearity in Large Amplitude Oscillatory Shear (LAOS) of Different Viscoelastic Materials", J. Rheol., 2009, 53, 1255-1274. https://doi.org/10.1122/1.3193713
  35. S. A. Rogers and M. P. Lettinga, "A Sequence of Physical Processes Determined and Quantified in Large-Amplitude Oscillatory Shear (LAOS) : Application to Theoretical Nonlinear Models", J. Rheol., 2012, 56, 1-25. https://doi.org/10.1122/1.3662962
  36. K. S. Cho, J. W. Kim, J. E. Bae, J. H. Youk, H. J. Jeon, and K. W. Song, "Effect of Temporary Network Structure on Linear and Nonlinear Viscoelasticity of Polymer Solutions", Korea-Aust. Rheol. J., 2015, 27, 151-161. https://doi.org/10.1007/s13367-015-0015-y
  37. K. W. Song and G. S. Chang, "Nonlinear Viscoelastic Behavior of Concentrated Polyisobutylene Solutions in Large Amplitude Oscillatory Shear Deformation", Kor. J. Rheol., 1998, 10, 173-183.
  38. K. S. Cho, K. Hyun, K. H. Ahn, and S. J. Lee, "A Geometrical Interpretation of Large Amplitude Oscillatory Shear Response", J. Rheol., 2005, 49, 747-758. https://doi.org/10.1122/1.1895801
  39. K. S. Cho, K. W. Song, and G. S. Chang, "Scaling Relations in Nonlinear Viscoelastic Behavior of Aqueous PEO Solutions under Large Amplitude Oscillatory Shear Flow", J. Rheol., 2010, 54, 27-63. https://doi.org/10.1122/1.3258278
  40. G. S. Chang, H. J. Ahn, and K. W. Song, "A Simple Analysis Method to Predict the Large Amplitude Oscillatory Shear (LAOS) Flow Behavior of Viscoelastic Polymer Liquids", Text. Sci. Eng., 2015, 52, 159-166. https://doi.org/10.12772/TSE.2015.52.159
  41. E. K. Park and K. W. Song, "Rheological Evaluation of Petroleum Jelly as a Base Material in Ointment and Cream Formulations with Respect to Rubbing onto the Human Body", Korea-Aust. Rheol. J., 2010, 22, 279-289.
  42. M. S. Kwak, H. J. Ahn, and K. W. Song, "Rheological Investigation of Body Cream and Body Lotion in Actual Application Conditions", Korea-Aust. Rheol. J., 2015, 27, 241-251. https://doi.org/10.1007/s13367-015-0024-x
  43. H. S. Melito, C. R. Daubert, and E. A. Foegeding, "Relationships between Nonlinear Viscoelastic Behavior and Rheological, Sensory and Oral Processing Behavior of Commercial Cheese", J. Texture Stud., 2013, 44, 253-288. https://doi.org/10.1111/jtxs.12021
  44. J. A. Carmona, P. Ramirez, N. Calero, and J. Munoz, "Large Amplitude Oscillatory Shear of Xanthan Gum Solutions : Effect of Sodium Chloride (NaCl) Concentration", J. Food Eng., 2014, 126, 165-172. https://doi.org/10.1016/j.jfoodeng.2013.11.009
  45. B. T. Stokke, B. E. Christensen, and O. Smidsrod in "Polysaccharides : Structural Diversity and Functional Versatility-Macromolecular Properties of Xanthan", S. Dumitriu Ed., Marcel Dekker, New York, 1998, pp.433-472.
  46. B. Katzbauer, "Properties and Applications of Xanthan Gum", Polym. Degrad. Stabil., 1998, 59, 81-84. https://doi.org/10.1016/S0141-3910(97)00180-8
  47. G. Holzwarth and E. B. Prestridge, "Multistranded Helix in Xanthan Polysaccharide", Science, 1977, 197, 757-759. https://doi.org/10.1126/science.887918
  48. T. A. Camesano and K. J. Wilkinson, "Single Molecule Study of Xanthan Conformation Using Atomic Force Microscopy", Biomacromolecules, 2001, 2, 1184-1191. https://doi.org/10.1021/bm015555g
  49. K. Ogawa and T. Yui in "Polysaccharides : Structural Diversity and Functional Versatility-X-ray Diffraction Study of Polysaccharides", S. Dumitriu Ed., Marcel Dekker, New York, 1998, pp.101-130.
  50. K. Born, V. Langendorff, and P. Boulenguer, "Biopolymers", Vol. 5, Wiley-Interscience, New York, 2001.
  51. M. A. Zirnsak, D. V. Boger, and V. Tirtaatmadja, "Steady Shear and Dynamic Rheological Properties of Xanthan Gum Solutions in Viscous Solvents", J. Rheol., 1999, 43, 627-650. https://doi.org/10.1122/1.551007
  52. M. S. Chun, C. Kim, and D. E. Lee, "Conformation and Translational Diffusion of a Xanthan Polyelectrolyte Chain : Brownian Dynamics Simulation and Single Molecule Tracking", Phys. Rev. E., 2009, 79, 051919. https://doi.org/10.1103/PhysRevE.79.051919
  53. M. S. Chun and M. J. Ko, "Rheological Correlations of Relaxation Time for Finite Concentrated Semiflexible Polyelectrolytes in Solvents", J. Kor. Phys. Soc., 2012, 61, 1108-1113. https://doi.org/10.3938/jkps.61.1108
  54. M. S. Chun and O. O. Park, "On the Intrinsic Viscosity of Anionic and Nonionic Rodlike Polysaccharide Solutions", Macromol. Chem. Phys., 1994, 195, 701-711. https://doi.org/10.1002/macp.1994.021950227
  55. G. S. Chang, J. S. Koo, and K. W. Song, "Wall Slip of Vaseline in Steady Shear Rheometry", Korea-Aust. Rheol. J., 2003, 15, 55-61.
  56. J. M. Dealy and K. F. Wissbrun, "Melt Rheology and Its Role in Plastics Processing : Theory and Applications", Van Nostrand Reinhold, New York, 1990.
  57. A. J. Giacomin and J. M. Dealy in "Techniques in Rheological Measurement : Large-Amplitude Oscillatory Shear", A. A. Collyer Ed., Chapman & Hall, London, 1993, pp.99-121.
  58. T. Neidhofer, M. Wilhelm, and B. Debbaut, "Fourier-Transform Rheology Experiments and Finite-Element Simulations on Linear Polystyrene Solutions", J. Rheol., 2003, 47, 1351-1371. https://doi.org/10.1122/1.1608954
  59. K. Hyun, J. G. Nam, M. Wilhelm, K. H. Ahn, and S. J. Lee, "Nonlinear Response of Complex Fluids under LAOS (Large Amplitude Oscillatory Shear) Flow", Korea-Aust. Rheol. J., 2003, 15, 97-105.
  60. C. O. Klein, H. W. Spiess, A. Calin, C. Balan, and M. Wilhelm, "Separation of the Nonlinear Oscillatory Response into a Superposition of Linear, Strain Hardening, Strain Softening, and Wall Slip Response", Macromolecules, 2007, 40, 4250-4259. https://doi.org/10.1021/ma062441u
  61. W. Philippoff, "Vibrational Measurements with Large Amplitudes", Trans. Soc. Rheol., 1966, 10, 317-334. https://doi.org/10.1122/1.549049
  62. T. T. Tee and J. M. Dealy, "Nonlinear Viscoelasticity of Polymer Melts", Trans. Soc, Rheol., 1975, 19, 595-615. https://doi.org/10.1122/1.549387
  63. M. Wilhelm, D. Maring, and H. W. Spiess, "Fourier-Transform Rheology", Rheol. Acta, 1998, 37, 399-405. https://doi.org/10.1007/s003970050126
  64. M. Wilhelm, P. Reinheimer, and M. Ortseifer, "High Sensitivity Fourier-Transform Rheology", Rheol. Acta, 1999, 38, 349-356. https://doi.org/10.1007/s003970050185
  65. M. Wilhelm, P. Reinheimer, M. Ortseifer, T. Neidhofer, and H.W. Spiess, "The Crossover between Linear and Nonlinear Mechanical Behavior in Polymer Solutions as Detected by Fourier-Transform Rheology", Rheol. Acta, 2000, 39, 241-246. https://doi.org/10.1007/s003970000084
  66. M. Wilhelm, "Fourier-Transform Rheology", Macromol. Mat. Eng., 2002, 287, 83-105. https://doi.org/10.1002/1439-2054(20020201)287:2<83::AID-MAME83>3.0.CO;2-B
  67. H. Kim, K. Hyun, D. J. Kim, and K. S. Cho, "Comparison of Interpretation Methods for Large Amplitude Oscillatory Shear Response", Korea-Aust. Rheol. J., 2006, 18, 91-98.
  68. R. H. Ewoldt, A. E. Hosoi, and G. H. McKinley, "New Measures for Characterizing Nonlinear Viscoelasticity in Large Amplitude Oscillatory Shear", J. Rheol., 2008, 52, 1427-1458. https://doi.org/10.1122/1.2970095
  69. W. Yu, P. Wang, and C. Zhou, "General Stress Decomposition in Nonlinear Oscillatory Shear Flow", J. Rheol., 2009, 53, 215-238. https://doi.org/10.1122/1.3037267