DOI QR코드

DOI QR Code

Evaluation of Photon and Photoneutron Using High Energy X-ray in Radiation Therapy Room

고에너지 X-선 사용에 따른 방사선치료실 내 광자와 광중성자 평가

  • Park, Eun-Tae (Department of Radiation Oncology, Busan Paik Hospital, Inje University)
  • 박은태 (인제대학교 부산백병원 방사선종양학과)
  • Received : 2016.08.12
  • Accepted : 2016.10.30
  • Published : 2016.10.31

Abstract

Recently increased use of high energy x-ray in radiation therapy, so therapeutic efficiency of tumors that located deep part also increased. However, photoneutron is problem which is generated caused by photoneuclear reaction. Photoneutron is continually required management because of that is more harmful than photon. In this regard, the study utilizing simulation of the Monte Carlo method is actively progress about photoneutron but measure is deficient. So this study was analyzed the correlation between the measured photon and photoneutron by radiation measurement device. As a result, photons were reduced when distance is farther and field size is smaller. But photoneutron were increased when field size is smaller and increased to a certain distance then reduced.

근래의 방사선 치료는 고 에너지 사용이 증가하여 심부에 위치한 종양의 치료효율이 높아졌다. 그러나 이와 함께 광핵반응으로 인한 광중성자의 발생이 문제되고 있으며, 광중성자는 광자보다 인체의 위해도가 높아 지속적인 관리가 요구된다. 이와 관련하여 몬테카를로 방식의 모의실험을 활용한 연구가 활발히 진행되고 있지만, 실측에 있어서는 미비한 실정이다. 이에 본 연구는 방사선 검출기를 이용하여 거리와 위치에 따른 광자와 광중성자를 측정하여 상관관계를 분석하였다. 그 결과, 광자는 거리가 멀어지고 조사야가 작아질수록 산란선량이 감소함을 알 수 있었다. 또한 광중성자는 광자와는 다르게 조사야가 작을수록 선량값이 증가하였으며, 일정거리까지 증가하는 경향성을 보이다 감소하는 것으로 나타났다.

Keywords

References

  1. J. S. Lee, J. N. Kim, “Efficient Data Acquisition Technique for Clinical Application of Multileaf Collimator,” The Journal of the Korea Contents Association, Vol. 8, No. 11, pp. 182-188, 2008. https://doi.org/10.5392/JKCA.2008.8.11.182
  2. E. T. Park, D. H. Lee, S. S. Kang, “Evaluation of Photoneutron by Hypofractionated Radiotherapy,” The Journal of the Korea Contents Association, Vol. 15, No. 12, pp. 347-354, 2015.
  3. E. T. Park, D. Y. Lee, S. J. Ko, J. H. Kim, S. S. Kang, “A Study on Photon Spectrum in Medical Linear Accelerator Based on MCNPX,” Jounal of the Korean Society Radiology, Vol. 8, No. 5, pp. 249-254, 2014. https://doi.org/10.7742/jksr.2014.8.5.249
  4. O. N. Yang, C. H. Lim, “Study on the Photoneutrons Produced in 15 MV Medical Linear Accelerators : Comparison of Three-Dimensional Conformal Radiotherapy and Intensity-Modulated Radiotherapy,” Journal of Radiological Science and Technology, Vol. 35, No. 4, pp. 335-343, 2012.
  5. J. O. Lee, D. H. Jeong, J. K. Kang, “Neutron Generation from a 24 MV Medical Linac,” Korean Journal of Medical Physics, Vol. 16, No. 2, pp. 97-103, 2005.
  6. E. T. Park, S. J. Jin, C. W. Park, "Evaluation of Photoneutron During Radiation Therapy when Using Flattening Filter and Tracking Jaw with High Energy X-ray," Journal of the Korean Society of Radiology, Vol. 10, pp. 125-131, 2016. https://doi.org/10.7742/jksr.2016.10.2.125
  7. L. donadille, F. Trompier, I. robbes, S. Derreumaux, J. Mantione, B. Asselineau, K. Amgarou, A. Martin, J. F. Bottollier-Depois, F. Queinnec, B. Aubert, I. Clairand, “Radiation protection of workers associated with secondary neutrons produced by medical linear accelerators,” Radiation Measurements, Vol. 43, No. 2-6, pp. 939-943, 2008. https://doi.org/10.1016/j.radmeas.2008.01.018
  8. Y. S. Park, H. T. KIM, S. J. Ko, S. S. Lee, Radiobiology 2nd edition, Jeongmungak, Seoul, 2012.
  9. ICRP, The 2007 Recommendations of the Internation al Commission on Radiological Protection, ICRP Publication 103, 2007.
  10. AAPM, Neutron Measurements Around High Energy X-ray Radiotherapy Machines, AAPM Report No. 19, 1987
  11. NCRP, Neutron Contamination from Medical Electron Accelerators, NCRP Report No. 79, 1984
  12. Nuclear Safety and Security Commission, Nuclear Safety Act, 2014
  13. S. S. Chu, C. O. Suh, G. E. Kim, “Shielding for Critical Organs and Radiation Exposure Dose Distribution in Patients with High Energy Radiotherapy,” Journal of Radiation Protection and Research, Vol. 27, No. 1, pp. 1-10, 2002.
  14. S. K. Choi, “Change of the Scattered Dose by Field Size in X-ray Radiation,” The Journal of the Korea Contents Association, Vol. 13, No. 3, pp. 198-203, 2013.
  15. S. K. Choi, “Relationship between the Distribution of Space doses in X-ray Rooms and the "Inverse Square Law of Distance,” The Journal of the Korea Contents Association, Vol. 13, No. 8, pp. 301-307, 2013. https://doi.org/10.5392/JKCA.2013.13.08.301
  16. S. S. Kang, I. H. Go, G. J. Kim, S. H. Kim, Y. S, Kim, Radiation Therapeutics 3rd edition, Cheong-gumunhwasa, Seoul, 2014.
  17. N. Mohammadi, S. H. Miri-Hakimabad, L. Rafat-Motavalli, “A Monte Carlo Study for Photoneutron Dose Estimations around the High-Energy Linacs,” Jounal of Biomedical Physics & Engineering, Vol. 4, No. 4, pp. 127-140, 2014.
  18. E. T. Park, S. J. Ko, J. H. Kim, S. S. Kang, “Evaluation of Photoneutron Energy Distribution in the Radiotherapy Room,” Journal of Radiological Science and Technology, Vol. 37, No. 3, pp. 223-231, 2014.
  19. A Ghasemi, T. Allahverdi Pourfallah, M. R. Akbari, H. Babapour, M. Shahidi, “Photo neutron dose equivalent rate in 15 MV X-ray beam from a Siemens Primus Linac,” Jounal of Medical Physics, Vol. 40, No. 2, pp. 90-94, 2016.

Cited by

  1. 선형가속기의 엑스선 조사에너지와 MU값의 변화가 치료실 내 공간선량률 변화에 미치는 영향 vol.14, pp.2, 2016, https://doi.org/10.7742/jksr.2020.14.2.77