DOI QR코드

DOI QR Code

Influence of surface roughness of ZnO layer on the growth of polycrystalline Si layer via aluminum-induced layer exchange process

  • Choi, Sung-Kuk (Major of Electronic Material Engineering, Korea Marine and Ocean University) ;
  • Chang, Won-Beom (Major of Electronic Material Engineering, Korea Marine and Ocean University) ;
  • Jung, Soo-Hoon (Major of Electronic Material Engineering, Korea Marine and Ocean University) ;
  • Hara, Kosuke (Institute for Materials Research, Tohoku University) ;
  • Watanabe, Haruna (Institute for Materials Research, Tohoku University) ;
  • Usami, Noritaka (Institute for Materials Research, Tohoku University) ;
  • Chang, Ji-Ho (Major of Electronic Material Engineering & Department of Convergence Study on the Ocean Science and Technology, Korea Maritime and Ocean University)
  • Received : 2016.01.26
  • Accepted : 2016.09.02
  • Published : 2016.10.31

Abstract

This study investigated the effect of surface roughness of zinc oxide (ZnO) layer on the growth of polycrystalline Si layer via an Al-induced layer exchange process. It was found that the growth rate, grain size, crystallization fraction, and preferential orientation of the polycrystalline Si layer were strongly influenced by the surface roughness of the underlying ZnO layer. As the roughness of the ZnO surface increased, a higher growth rate (~40 min) and preferential Si (100) orientation were obtained because of the spatial concentration fluctuations in the Al-Si alloy, induced by the surface roughness of the underlying ZnO layer.

Keywords

References

  1. S. D. Brotherton, J. R. Ayres, and N. D. Young, "Characterisation of low temperature poly-Si thin film transistors," Solid-State Electronics, vol. 34, no. 7, pp. 671-679, 1991. https://doi.org/10.1016/0038-1101(91)90002-G
  2. O. Nast, T. Puzzer, L. M. Koschier, A. B. Sproul, and S. R. Wenham, "Aluminum-induced crystallization of amorphous silicon on glass substrates above and below the eutectic temperature," Applied Physics Letters, vol. 73, no. 22, pp. 3214-3216, 1998. https://doi.org/10.1063/1.122722
  3. Y. Matsumoto and Z. Yu, P-type "Polycrystalline Si Films Prepared by Aluminum-Induced Crystallization and Doping Method," Japanese Journal of Applied Physics, 40 vol. 40, no. 4A, pp. 2110-2114, 2001. https://doi.org/10.1143/JJAP.40.2110
  4. B. Rau, I. Sieber, J. Schneider, M. Muske, M. Stoger-Pollach, P. Schattschneider, S. Gall, and W. Fuhs, "Low-temperature Si epitaxy on large-grained polycrystalline seed layers by electron-cyclotron resonance chemical vapor deposition," Journal of Crystal Growth, vol. 270, no. 3-4, pp. 396-401, 2004. https://doi.org/10.1016/j.jcrysgro.2004.07.034
  5. D. Van Gestel, I. Gordon, L. Carnel, K. Van Nieuwenhuysen, J. D'Haen, J. Irigoyen, G. Beaucarne, and J. Poortmans, "Influence of seed layer morphology on the epitaxial growth of polycrystalline-silicon solar cells," Thin Solid Films, vol. 511-512, pp. 35-40, 2006. https://doi.org/10.1016/j.tsf.2005.12.149
  6. J. Schneider, J. Klein, M. Muske, S. Gall, and W. Fuhs, "Depletion regions in the aluminum-induced layer exchange process crystallizing amorphous Si," Applied Physics Letters, vol. 87, p. 031905, 2005. https://doi.org/10.1063/1.1996849
  7. H. Kuraseko, N. Orita, H. Koaizawa, and M. Kondo, "Inverted Aluminum-Induced Layer Exchange Method for Thin Film Polycrystalline Silicon Solar Cells on Insulating Substrates," Applied Physics Express, vol. 2, no. 1, p. 015501, 2009. https://doi.org/10.1143/APEX.2.015501
  8. D. Dimova-Malinovska, O. Angelov, M. Kamenova, A. Vaseashta, and J. C. Pivin, "Structural properties of poly-Si thin films grown on ZnO: Al coated glass substrates by aluminum induced crystallisation," Journal of optoelectronics and advanced materials, vol. 9, no. 2, pp. 355-358, 2007.
  9. H. Kim, D. Kim, G. Lee, D. Kim, and S. H. Lee, "Polycrystalline Si films formed by Al-induced crystallization (AIC) with and without Al oxides at Al/a-Si interface," Solar Energy Materials and Solar Cells, vol. 74, no. 1-4, pp. 323-329, 2002. https://doi.org/10.1016/S0927-0248(02)00091-0
  10. G. Willeke, H. Nussbaumer, H. Bender, and E. Bucher, "A simple and effective light trapping technique for polycrystalline silicon solar cells," Solar Energy Materials and Solar Cells, vol. 26, no.4, pp. 345-356, 1992. https://doi.org/10.1016/0927-0248(92)90054-S
  11. D. Tsukada, Y. Matsumoto, R. Sasaki, M. Takeishi, T. Saito, N. Usami, and T. Suemasu, "Fabrication of (111)-oriented Si layers on SiO2 substrates by an aluminum-induced crystallization method and subsequent growth of semiconducting BaSi2 layers for photovoltaic application," Journal of Crystal Growth, vol. 311, pp. 3581-3586, 2009. https://doi.org/10.1016/j.jcrysgro.2009.04.039
  12. J. Muller, B. Rech, J. Springer, and M. Vanecek, "TCO and light trapping in silicon thin film solar cells," Solar Energy, vol. 77, no. 6, pp. 917-930, 2004. https://doi.org/10.1016/j.solener.2004.03.015
  13. O. Kluth, G. Schope, J. Hupkes, C. Agashe, J. Mueller, and B. Rech, "Modified Thornton model for magnetron sputtered zinc oxide: film structure and etching behavior," Thin Solid Films, vol. 442, pp. 80-85, 2003. https://doi.org/10.1016/S0040-6090(03)00949-0
  14. B. Rech, T. Repmann, M. N. van den Donker, M. Berginski, T. Kilper, J. Hupkes, S. Calnan, H. Stiebig, and S. Wieder, "Challenges in microcrystalline silicon based solar cell technology," Thin Solid Films, vol. 511-512, pp. 548-555, 2006. https://doi.org/10.1016/j.tsf.2005.12.161
  15. C. Y. Ma, F. Lapostolle, P. Briois, and Q. Y. Zhang, "Effect of $O_2$ gas partial pressure on structures and dielectric characteristics of rf sputtered $ZrO_2$ thin films," Applied Surface Science, vol. 253, no. 21, pp. 8718-8724, 2007. https://doi.org/10.1016/j.apsusc.2007.04.054
  16. J. Schneider, A. Schneider, A. Sarikov, J. Klein, M. Muske, S. Gall, and W. Fuhs, "Aluminum-induced crystallization: nucleation and growth process," Journal of Non-Crystalline Solids, vol. 352, no. 9-20, pp. 972-975, 2006. https://doi.org/10.1016/j.jnoncrysol.2005.09.036
  17. C. W. Lan, C. M. Hsu, C. C. Liu, and Y. C. Chang, "Adaptive phase field simulation of dendritic growth in a forced flow at various supercoolings," Physical Review E, vol. 65, p. 061601, 2002.
  18. C. W. Lan, C. M. Hsu, and C. C. Liu, "Efficient adaptive phase field simulation of dendritic growth in a forced flow at low supercooling," Journal of Crystal Growth, vol. 241, pp. 379-386, 2002. https://doi.org/10.1016/S0022-0248(02)01287-3
  19. N. Provatas, N. Goldenfield, and J. Dantzig, "Efficient computation of dendritic microstructures using adaptive mesh refinement," Physical Review Letters, vol. 80, pp. 3308-3311, 1998. https://doi.org/10.1103/PhysRevLett.80.3308
  20. H. K. Lin, C. C. Chen, and C. W. Lan, "A simple anisotropic surface free energy function for three-dimensional phase field modeling of multi-crystalline crystal growth," Journal of Crystal Growth, vol. 362, pp. 62-65, 2013. https://doi.org/10.1016/j.jcrysgro.2012.01.004
  21. J. Klein, J. Schneider, M. Muske, S. Gall, and W. Fuhs, "Aluminium-induced crystallisation of amorphous silicon: influence of the aluminum layer on the process," Thin Solid Films, vol. 451-452, pp. 481-484, 2004. https://doi.org/10.1016/j.tsf.2003.11.009
  22. M. N. Jung, A. Okada, T. Saito, T. Suemasu, and N. Usami, "On the Controlling Mechanism of Preferential Orientation of Polycrystalline-Silicon Thin Films Grown by Aluminum-Induced Crystallization," Applied Physics Express, vol. 3, no. 9, p. 095803, 2010. https://doi.org/10.1143/APEX.3.095803
  23. K. Y. Lee, M. Muske, I. Gordon, M. Berginski, J. D'Haen, J. Hupkes, S. Gall, and B. Rech, "Large-grained poly-Si films on ZnO:Al coated glass substrates," Thin Solid Film, vol. 516, pp. 6869-6872, 2008. https://doi.org/10.1016/j.tsf.2007.12.128
  24. G. Ekanayake, T. Quinn, and H. S. Reehal, "Large-grained poly-silicon thin films by aluminum-induced crystallisation of microcrystalline silicon," Journal of Crystal Growth, vol. 293, pp. 351-358, 2006. https://doi.org/10.1016/j.jcrysgro.2006.05.083
  25. Y. Sugimoto, N. Takata, T. Hirota, K. Ikeda, F. Yoshida, H. Nakashima, and H. Nakashima, "Low-temperature fabrication of polycrystalline Si thin film using Al-induced crystallization without native Al Oxide at amorphous Si/Al interface," Japanese Journal of Applied Physics, vol. 44, pp. 4770-4775, 2005. https://doi.org/10.1143/JJAP.44.4770
  26. J. Schneider, A. Sarikov, J. Klein, M. Muske, I. Sieber, T. Quinn, H. S. Reehal, S. Gall, and W. Fuhs, "A simple model explaining the preferential (1 0 0) orientation of silicon thin films made by aluminum-induced layer exchange," Journal of Crystal Growth, vol. 287, pp. 423-427, 2006. https://doi.org/10.1016/j.jcrysgro.2005.11.057