DOI QR코드

DOI QR Code

Fluid-structure interaction problems solution by operator split methods and efficient software development by code-coupling

  • Received : 2016.03.19
  • Accepted : 2016.05.10
  • Published : 2016.06.25

Abstract

An efficient and general numerical strategy for fluid-structure interaction problems is presented where either the fluid or the structure part are represented by nonlinear models. This partitioned strategy is implemented under the form of code coupling that allows to (re)-use previous made developments in a more general multi-physics context. This strategy and its numerical implementation is verified on classical fluid-structure interaction benchmarks, and then applied to the impact of tsunamis waves on submerged structures.

Keywords

References

  1. Arnold, M. and Gunther, M. (2001), "Preconditioned dynamic iteration for coupled differential-algebraic systems", BIT Numer. Math., 41(1), 1-25. https://doi.org/10.1023/A:1021909032551
  2. Fochesato, C., Grilli, S. and Dias, F. (2007), "Numerical modeling of extreme rogue waves generated by directional energy focusing", Wave Motion, 44(5), 395-416. https://doi.org/10.1016/j.wavemoti.2007.01.003
  3. Ibrahimbegovic, A. (2006), Mecanique non lineaire des solides deformables : Formulation theorique et resolution numerique par elements finis, Hermes Sciences-Lavoisier, Paris
  4. Ibrahimbegovic, A. (2009), Nonlinear solid mechanics: Theoretical formulation and finite element solution methods, Springer, Berlin
  5. Jasak H. (1996), "Error analysis and estimation for the finite volume method with applications to fluid flows", Ph.D. Dissertation, Department of mechanical engineering, Imperial College of Science, Technology and Medicine
  6. Jasak, H. and Tukovic, Z. (2006), "Automatic mesh motion for the unstructured finite volume method", Transactions of FAMENA, 30(2), 1-20.
  7. Kowalsky, U., Bente, S. and Dinkler, D. (2014), "Modeling of coupled THMC processes in porous media", Coupled Syst. Mech., 3(1), 27-52. https://doi.org/10.12989/csm.2014.3.1.027
  8. Lachaume, C., Biausser, B., Fraunie, P., Grilli, S.T. and Guignard, S. (2003), "Modeling of breaking and post-breakingwaves on slopes by coupling of BEM and VOF methods", Proceedings of the 13th International Offshore and Polar Engineering Conference, January.
  9. Matthies, H.G., Niekamp, R. and Steindorf, J. (2006), "Algorithms for strong coupling procedures", Comput. Method. Appl. Mech. Eng., 195(17), 2028-2049. https://doi.org/10.1016/j.cma.2004.11.032
  10. Niekamp, R., Ibrahimbegovic, A. and Matthies, H.G. (2014), "Formulation, solution and CTL software for coupled thermomechanics systems", Coupled Syst. Mech., 3(1), 1-25. https://doi.org/10.12989/csm.2014.3.1.001
  11. Srisupattarawanit, T., Niekamp, R. and Matthies, H.G. (2006), "Simulation of nonlinear random finite depth waves coupled with an elastic structure", Comput. Method. Appl. Mech. Eng., 195(23), 3072-3086. https://doi.org/10.1016/j.cma.2005.02.027
  12. Wall, W.A. (1999), "Fluid-Struktur Interaktion mit stabilisierten Finiten Elementen", Ph.D. Thesis, Institut fur Baustatik, Universitat Stuttgart, 1999
  13. Wall, W.A. and Ramm, E. (1998), "Fluid structure interaction based upon a stabilized (ALE) finite element method", SFB 404, Geschaftsstelle.
  14. Weller, H.G., Tabor, G., Jasak, H. and Fureby, C. (1998), "A tensorial approach to computational continuum mechanics using object-oriented techniques", Comput. Phys., 12(6), 620-631. https://doi.org/10.1063/1.168744
  15. Zienkiewicz, O.C. and Taylor, R.L. (2005), "The finite element method", Butterworth- Heinemann, Oxford, 5th Ed.

Cited by

  1. Hydrodynamic coupling distance between a falling sphere and downstream wall vol.7, pp.4, 2016, https://doi.org/10.12989/csm.2018.7.4.407
  2. ED-FEM multi-scale computation procedure for localized failure vol.8, pp.2, 2016, https://doi.org/10.12989/csm.2019.8.2.111
  3. Models for drinking water treatment processes vol.8, pp.6, 2016, https://doi.org/10.12989/csm.2019.8.6.489
  4. Review of Resilience-Based Design vol.9, pp.2, 2020, https://doi.org/10.12989/csm.2020.9.2.091
  5. Structural performance assessment of fixed offshore platform based on in-place analysis vol.9, pp.5, 2016, https://doi.org/10.12989/csm.2020.9.5.433