DOI QR코드

DOI QR Code

철도 교량접속부의 토압과 노반강도와의 상관관계

A Correlation Analysis on Earth Pressure and Subgrade Stiffness in Bridge Abutment Transition Zone

  • Kim, Jin-Hwan (Department head of Korea Rail Network Authority, Graduate School of Railway Seoul National University of Science & Technology) ;
  • Cho, Kook-Hwan (Dept. of Railway Construction Engineering, Graduate School of Railway, Seoul National University of Science & Technology)
  • 투고 : 2016.10.17
  • 심사 : 2016.10.28
  • 발행 : 2016.10.31

초록

고속철도 건설의 증가와 기존선 개량사업 등은 철도의 직선화를 필요로 하며, 이는 터널과 교량 건설의 증가로 이어지고 있다. 철도에서 접속부는 궤도지지강성이 변화하는 구간으로 열차운행의 안정 및 잦은 궤도틀림 발생 등으로 특별히 주의를 요하는 구간이 된다. 가장 대표적인 접속부 구간은 터널과 토공의 접속부와 교량과 토공의 접속부를 들 수 있다. 그 중 교량과 토공의 접속부는 여러 가지 요인에 의하여 많은 문제를 안고 있는 실정이다. 본 논문에서는 철도에서 교량과 토공의 접속부가 안고 있는 근본적인 문제를 분석하였다. 이를 통하여 철도 교량과 토공의 접속부에 대한 이해도를 높이고 지속적으로 발생하고 있는 이 구간에서의 문제를 해결하는 방안을 제시하고자 한다.

The construction of high speed railways and improvement projects of for conventional railways require straight railway lines of railway, which leads to an increase of bridge and tunnel construction. Transition zones in railways means that the track support stiffness is variedvaries in over short ranges. Sspecial attention is required in theose transition zones since because instability of train running in train and irregularities of track irregularities are can frequently occurred. Typical transition zones are between bridges and earthworks and between tunnels and earthworks. On In a transition zone, a bridge abutment transition zone has many problems in with various causes. In this paper, fundamental problems of bridge abutment transition zones is are analyzed to enhance the understanding about of bridge abutment transition zones. Suggestions for improving problems in the transition zones are proposed.

키워드

참고문헌

  1. Korea Rail Network Authority (2013) The Railway Design Criteria(Subbase Volume).
  2. B.B. Broms, A.O. Casbarian (1965) Effects of rotation of principal stress axes and of the intermediate principal stress on the shear strength, Proceedings of the 6th ICSMFE, Vol. l, Montreal, pp. 179-183.
  3. J.M. Duncan, G.W. Williams, A.L. Sehn, R.B. Seed (1992) Estimation Earth Pressure Due to Compaction, Journal of Geotechnical Engineering, 117(12), pp. 1833-1847. https://doi.org/10.1061/(ASCE)0733-9410(1991)117:12(1833)
  4. D.R. Carder, R.G. Pocock, R.T. Murray (1977) Experimental Retaining Wall Facility-Lateral stress measurements with Sand Backfill, Transport and Road Research Laboratory Report No. LR 766.
  5. D.R. Carder, R.T. Murray, J.V. Krawczyk (1980) Earth Pressure against an Experimental Retaining Wall Backfilled with Silty Clay, Transport and Road Research Laboratory Report No. LR 946.
  6. T.J. Chen, Y.S. Fang (1992) Earth pressure due to vibratory compaction, Journal of Geotechnical and Geo Engineering, 134(4), pp. 437-444. https://doi.org/10.1061/(ASCE)1090-0241(2008)134:4(437)
  7. K.S. Park, S.H. Lee, J.W. Lee, S.Y. Seo (2012) The trackbed assurance management technique relation analysis and management reference improvement plan, Proceedings of Korean Society for Railway 2012 Spring Conference, Gyeong-Ju, pp. 1569-1576.
  8. S.J. Lee, I.W. Lee, J.W. Lee, J.S. Lee (2009) Long-term Compression Settlement of Granular(Rock/Soil Mixture) Fill Materials under Concrete Track, Journal of the Korean Geotechnical Society, 25(8), pp. 95-106.