DOI QR코드

DOI QR Code

Influence of Kaolinite Clay Supplementation on Growth Performance and Digestive Function in Finishing Calf-fed Holstein Steers

  • Ortiz, Jose (Instituto de Investigaciones en Ciencias Veterinarias, UABC) ;
  • Montano, Martin (Instituto de Investigaciones en Ciencias Veterinarias, UABC) ;
  • Plascencia, Alejandro (Instituto de Investigaciones en Ciencias Veterinarias, UABC) ;
  • Salinas, Jaime (Facultad de Medicina Veterinaria y Zootecnia UAT) ;
  • Torrentera, Noemi (Instituto de Investigaciones en Ciencias Veterinarias, UABC) ;
  • Zinn, Richard A. (Department of Animal Science, University of California)
  • 투고 : 2016.02.27
  • 심사 : 2016.04.18
  • 발행 : 2016.11.01

초록

Two experiments were conducted to examine the influence of kaolinite clay supplementation (0%, 1%, or 2% diet dry matter [DM] basis) on characteristics of digestion (Trial 1) and growth performance (Trial 2) in calf-fed Holstein steers fed a finishing diet. In Trial 1, 6 Holstein steers ($539{\pm}15kg$) with ruminal and duodenal cannulas were used to evaluate treatment effects on characteristics of digestion. Kaolinite clay supplementation decreased total tract DM digestion (linear effect, p<0.01) without effects ($p{\geq}0.10$) on site and extent of digestion of organic matter, neutral detergent fiber, starch and N, or ruminal microbial efficiency. There were no treatment effects on ruminal pH, volatile fatty acids molar proportions or estimated methane production. In Trial 2, 108 Holstein steers ($132.4{\pm}5.6kg$) were used in a 308-d study to evaluate growth performance and carcass characteristics. There were no treatment effects (p>0.10) on average daily gain (ADG) and gain efficiency (ADG/dry matter intake). Kaolinite supplementation tended (linear effect, p = 0.08) to increase dietary net energy (NE) during the initial 112-d period. However, the overall (308-d) effect of supplementation dietary NE was not appreciable (p>0.20). However, due to the inertness of kaolinite, itself, the ratio of observed-to-expected dietary NE increased with kaolinite supplementation. This effect was more pronounced (linear effect, $p{\leq}0.03$) during the initial 224 d of the study. Overall (308 d), kaolinite supplementation tended to increase (linear effect, p = 0.07) dietary NE by 3% over expected. Kaolinite supplementation did not affect carcass weight, yield grade, longissimus area, kidney, pelvic and heart fat, and quality grade, but decreased (linear effect, p = 0.01) dressing percentage. It is concluded that kaolinite supplementation up to 2% of diet DM may enhance energetic efficiency of calf-fed Holstein steers in a manner independent of changes in characteristics of ruminal and total tract digestion.

키워드

참고문헌

  1. AOAC (Association Official Analytical Chemists). 2000. Official methods of analysis. 17th edn. Association Official Analytical Chemists. Gaithersburg, MD, USA.
  2. Bergen, W. G., D. B. Purser, and J. H. Cline. 1968. Effect of ration on the nutritive quality of rumen microbial protein. J. Anim. Sci. 27:1497-1501. https://doi.org/10.2527/jas1968.2751497x
  3. Berthiaume, R., M. Ivan, and C. Lafreniere. 2007. Effects of sodium bentonite supplements on growth performance of feedlot steers fed direct-cut or wilted grass silage based diets. Can. J. Anim. Sci. 87:631-638. https://doi.org/10.4141/CJAS07018
  4. Britton, R. A., D. P. Cooling, and T. J. Klopfenstein. 1978. Effect of complexing sodium bentonite with soybean meal or urea in vitro ruminal ammonia release and nitrogen utilization in ruminants. J. Anim. Sci.46:1738-1747. https://doi.org/10.2527/jas1978.4661738x
  5. Cammack, K. M., C. L.Wright, K. J. Austin, P. S. Johnson, R. R. Cockrum, K. L. Kessler, and K. C. Olson. 2010. Effects of highsulfur water and clinoptilolite on health and growth performance of steers fed forage-based diets. J. Anim. Sci. 88:1777-1785. https://doi.org/10.2527/jas.2009-2343
  6. Cole, N. A., R. W. Todd, and D. B. Parker. 2007. Use of fat and zeolite to reduce ammonia emissions from beef cattle feedyards. In: Proceedings of the Air Quality Waste Management Agriculture. Broomfield, CO, USA; ASABE Publication Number 701P0907cd.
  7. Colling, D. P., R. A. Britton, S. D. Farlin, and M. K. Nielsen. 1979. Effects of adding sodium bentonite to high grain diets for ruminants. J. Anim. Sci. 48:641-648. https://doi.org/10.2527/jas1979.483641x
  8. Dinius, D. A., A. D. Peterson, T. A. Long, and B. R. Baumgardt. 1970. Intake and digestibility by sheep or rations containing various roughage substitutes. J. Anim. Sci. 30:309-312. https://doi.org/10.2527/jas1970.302309x
  9. EFSA (European Food Safety Authority). 2016. Safety and efficacy of a natural mixture of illite, montmorillonite and kaolinite (Argile Verte du Velay) as a feed additive for all animal species. EFSA J. 14:4342-4360. https://doi.org/10.2903/j.efsa.2016.4342
  10. Garrett, W. N. 1971. Energetic efficiency of beef and dairy steers. J. Anim. Sci. 32:451-456. https://doi.org/10.2527/jas1971.323451x
  11. Hill, F. N. and D. L. Anderson. 1958. Comparison of metabolizable energy and productive energy determinations with growing chicks. J. Nutr. 64:587-603. https://doi.org/10.1093/jn/64.4.587
  12. Ivan, M., M. S. Dayrell, and M. Hidiroglou. 1992. Effects of bentonite and monensin on selected elements in the stomach and liver of fauna-free and faunated sheep. J. Dairy Sci. 75:201-208. https://doi.org/10.3168/jds.S0022-0302(92)77754-6
  13. Martin, L. C., A. J. Clifford, and A. D. Tillman. 1969. Studies on sodium bentonite in ruminant diets containing urea. J. Anim. Sci. 29:777-782. https://doi.org/10.2527/jas1969.295777x
  14. McCollum, F. T. and M. L. Galyean. 1983. Effects of clinoptilolite on rumen fermentation, digestion and feedlot performance in beef steers fed high concentrate diets. J. Anim. Sci. 56:517-524. https://doi.org/10.2527/jas1983.563517x
  15. Mendel, V. E. 1971. Montmorillonite clay in feed lot rations. J. Anim. Sci. 33:891-894. https://doi.org/10.2527/jas1971.334891x
  16. Murphey, C. E., D. K. Hallett, W. E. Tyler, and J. C. Pierce Jr. 1960. Estimating yields of retail cuts from beef carcasses. In: the 62nd Meeting of the American Society of Animal Production, Chicago, IL, USA. pp. 1-12.
  17. NRC (National Research Council). 1984. Nutrient Requirements of Beef Cattle. 6th edn. National Academy of Press, Washington, DC, USA.
  18. NRC (National Research Council). 1996. Nutrient Requirements of Beef Cattle. 7th edn. National Academy of Press, Washington, DC, USA.
  19. Orskov, E. R., N. A. MacLeod, and D. J. Kyle. 1986. Flow of nitrogen from the rumen and abomasum in cattle and sheep given protein-free nutrients by intragrastric infusion. Br. J. Nutr.56:241-248. https://doi.org/10.1079/BJN19860103
  20. Owen, O. J., M. B. Nodu, U. A. Dike, and H. M. Ideozu. 2012. The effect of dietary kaolin (clay) as feed additive on the growth performance of broiler chickens. Greener J. Agric. Sci. 6:233-236.
  21. Safaei, M., F. Boldaji, B. Dastar, S. Hassani, M. S. A. Mutalib, and R. Rezaei. 2014. Effects of inclusion kaolin, bentonite and zeolite in dietary on chemical composition of broiler chicken meat. Asian J. Anim. Vet. Adv. 9:56-63. https://doi.org/10.3923/ajava.2014.56.63
  22. SAS (Statistical Analysis System) Institute Inc. 2004. User's Guide: Statistics, version 9. SAS Inst. Cary, NC, USA.
  23. Spotti, M., M. L. Fracchiola, F. Arioli, F. Canoni, and G. Pompa. 2005. Aflatoxin $B_{1}$ binding to sorbents in bovine ruminal fluid. Vet. Res. Commun. 29: 507-515. https://doi.org/10.1007/s11259-005-1867-2
  24. Tate, K., G. Youan, B. Theng, G. Churchman, J. Sing, and P. Berben. 2015. Can geophagy mitigate enteric methane emission from cattle? J. Prelim. Res. 2:1-8.
  25. Trckova, M., L. Matlova, L. Dvorska, and I. Pavlik. 2004. Kaolin, bentonite and zeolites as feed supplements for animals: health advantages and risks. Vet. Med. Czech. 49:389-399.
  26. USDA (United States Department of Agriculture). 1997. United States Standards for Grading of Carcass Beef. Agricultural Marketing Service, USDA Washington, DC, USA.
  27. Van Soest, P. J., J. B. Robertson, and B. A. Lewis. 1991. Methods for dietary fiber, neutral detergent fiber, and nonstarch polysaccharides in relation to animal nutrition. J. Dairy Sci. 74:3583-3597. https://doi.org/10.3168/jds.S0022-0302(91)78551-2
  28. Wolin, M. J. 1960. A theoretical rumen fermentation balance. J. Dairy Sci. 43:1452-1459. https://doi.org/10.3168/jds.S0022-0302(60)90348-9
  29. Zinn, R. A. 1990. Influence of flake density on the comparative feeding value of steam-flaked corn for feedlot cattle. J. Anim. Sci. 68:767-775. https://doi.org/10.2527/1990.683767x
  30. Zinn, R. A. and F. N. Owens. 1986. A rapid procedure for purine measurement and its use for estimating net ruminal protein synthesis. Can. J. Anim. Sci. 66:157-166. https://doi.org/10.4141/cjas86-017
  31. Zinn, R. A., A. Barreras, F. N. Owens, and A. Plascencia. 2008. Performance by feedlot steers and heifers: daily gain, mature weight, dry matter intake and dietary energetics. J. Anim. Sci. 86:2680-2689. https://doi.org/10.2527/jas.2007-0561