DOI QR코드

DOI QR Code

The Effects of Self-Healing for Ternary Blended Cement in Tap-water and Sea-water

삼성분계 시멘트의 해수와 담수에서의 자기치유 효과

  • Kim, Tae-Wan (Research Institute of Industrial Technology (RIIT), Pusan National University)
  • 김태완 (부산대학교 생산기술연구소)
  • Received : 2016.07.04
  • Accepted : 2016.08.30
  • Published : 2016.11.01

Abstract

The objective of this study is to investigate the self-healing properties of ternary blended cement(TBC) paste made with OPC, GGBFS and FA. The influence of OPC-GGBFS-FA on the self-healing ability of ternary blended cement paste was researched by ultrasonic pulse velocity(UPV) measurement. The TBC paste with GGBFS-FA replacement ratios of 20%, 40% and 60% were prepared having a constant water-cementitious materials ratios os 0.5. The research focuses on behavior after 28days(after loading). Four-point bending tests are used to pre-cracked the prismatic specimens at 28days. For specimens (uncracked and cracked) submerged in tap-water and sea-water until 60days. According to the experimental results, the TBC paste system has self-healing ability increased when the fraction of GGBFS increased. Because GGBFS and FA continues to hydrate after 28days, it is likely that hydrated products from GGBFS and FA may modify microstructures, seal these cracks. From these results, it is clear that the crack in all samples experience self-healing and that this occurs mostly in the first 30days of submerging. Futhermore, most of the healing for both specimens of submerged in sea-water and tap-water occurred during the first 30days. Sea-water submerged specimens healed cracks as fast as those in tap-water. Differences in healing effects of submerged in sea-water and tap-water may be attributed to the presence of specific sea-water ions. Therefore, self-healing effects considered age-effects was more strong effect occurred mostly in the first 30days, and then gradually weaken.

본 연구의 목적은 OPC, GGBFS 그리고 FA를 사용한 삼성분계 시멘트(TBC) 페이스트의 자기치유 특성에 관한 것이다. 초음파속도(UPV)측정으로 통해 삼성분계 시멘트의 자기치유 능력에 대한 OPC-GGBFS-FA의 영향을 분석하였다. TBC 페이스트는 0.5의 일정한 물-결합재 비에 GGBFS-FA를 20%, 40% 그리고 60% 치환한 배합이다. 본 연구는 재령 28일(하중 재하 후)이후의 거동에 초점을 맞추었다. 재령 28일에 휨시험을 통해 사각형의 보 시험체에 미리 균열을 발생시켰다. 시험체들은(균열을 발생시키지 않은 것과 균열을 발생시킨) 60일까지 담수와 해수에 침지하였다. 시험결과에 따르면 TBC 페이스트의 자기치유 능력은 GGBFS의 혼합률이 증가함에 따라 증가하였다. 이는 GGBFS와 FA는 재령 28일 이후에도 계속해서 수화가 진행되는데, GGBFS와 FA의 수화반응 물질들이 미세구조의 변화와 균열을 폐합한다. 이러한 결과들로부터, 균열을 발생시킨 모든 시험체에서 자기치유가 일어났고 이는 침지 30일에서 가장 많이 발생하였다. 더구나 담수와 해수에 침지한 시험체의 치유의 대부분이 침지 30일 동안 일어났다. 해수에 침지한 시험체의 균열 치유는 담수보다 빨랐다. 해수와 담수에 침지한 시험체의 치유효과의 차이는 해수에 포함된 이온들 때문이다. 더구나 재령효과를 고려한 자기치유효과는 침지 30일까지가 가장 강력하고 그다음엔 차츰 약해졌다.

Keywords

References

  1. Bagel, L. (1998), Strength and Pore Structure of Ternary Blended Cement Mortars Containing Blast Furnace Slag and Silica Fume, Cement and Concrete Research, 28, 1011-1020. https://doi.org/10.1016/S0008-8846(98)00078-7
  2. Berodier, E., and Scrivener, K. (2015), Evolution of Pore Structure in Blended Systems, Cement and Concrete Research, 73, 25-35. https://doi.org/10.1016/j.cemconres.2015.02.025
  3. Bohac, M., Palou, M., Novotny, R., Masilko, Jiři M., Vsiansky, D., and Stanek, T. (2014), Investigation on Early Hydration of Ternary Portland Cement-blast-furnace Slag-metakaolin Blends, Construction and Building Materials, 64, 333-341. https://doi.org/10.1016/j.conbuildmat.2014.04.018
  4. Erdem, T. K., and Kirca, O. (2008), Use of Ternary Blends in High Strength Concrete, Construction and Building Materials, 22, 1477-1483. https://doi.org/10.1016/j.conbuildmat.2007.03.026
  5. Ferrara, L. A., Krelani, V., and Carsana, M. (2014), A "Fracture Testing" Based Approach to Assess Crack Healing of Concrete with and Without Crystalline Admixtures, Construction and Building Materials, 68, 535-551. https://doi.org/10.1016/j.conbuildmat.2014.07.008
  6. Huang, H., Ye, G., and Damidot, D. (2013), Characterization and Quantification of Self-healing Behaviors of Microcracks Due to Further Hydration in Cement Paste, Cement and Concrete Research, 52, 71-81. https://doi.org/10.1016/j.cemconres.2013.05.003
  7. In, C. W., Holland, R. B., Kim, J. Y., Kurtis, K. E., Kahn, L. F., and Jacobs, L. J. (2013), Monitoring and Evaluation of Self-healing in Concrete using Sltrasound, NDT&E International, 57, 36-44. https://doi.org/10.1016/j.ndteint.2013.03.005
  8. Jeong, Y., Park, H., Jun, Y., Jeong, J. H., and Oh, J. E. (2015), Microstructural Verification of the Strength Performance of Ternary Blended Cement Systems with High Volumes of Fly Ash and GGBFS, Construction and Building Materials, 95, 96-107. https://doi.org/10.1016/j.conbuildmat.2015.07.158
  9. Jones, M. R., Dhir, R. K., and Magee, B. J. (1997), Concrete Containing Ternary Blended Binders: Resistance to Chloride Ingress and Carbonation, Cement and Concrete Research, 27, 825-831. https://doi.org/10.1016/S0008-8846(97)00075-6
  10. Khan, M. I., Lynsdale, C. J., and Waldron, P. (2000), Porosity and Strength of PFA/SF/OPC Ternary Blended Paste, Cement and Concrete Research, 30, 1225-1229. https://doi.org/10.1016/S0008-8846(00)00307-0
  11. Kim, J. B., Shin, K. S., and Park, K. B. (2012), Mechanical Properties of Ultra High Strength Concrete using Ternary Blended Cement, Journal of the Korea Institute for Structural Maintenance and Inspection, 16, 56-62. https://doi.org/10.11112/jksmi.2012.16.6.056
  12. Lee, C. S., and Yoon, I. S. (2003), An Experimental Study on the Durability Performance for Ternary Blended Concrete Containing Both Fly Ash and Granulated Blast Furnace Slag. Journal of the Korea Institute for Structural Maintenance and Inspection, 7, 139-146.
  13. Liu, S., and Zou, M. (2011), Influence of Slag and Fly Ash on the Self-Healing Ability of Concrete. Advanced Materials Research, 306-307, 1020-1023. https://doi.org/10.4028/www.scientific.net/AMR.306-307.1020
  14. Palin, D., Wiktor, V., and Jonkers, H. M. (2015), Autogenous Healing of Marine Exposed Concrete: Characterization and Quantification Through Visual Crack Closure. Cement and Concrete Research, 73, 17-24. https://doi.org/10.1016/j.cemconres.2015.02.021
  15. Qian, S. Z., Zhou, J., and Schlangen, E. (2010), Influence of Curing Condition and Precracking Time on the Self-healing Behavior of Engineered Cementitious Composites, Cement & Concrete Composites, 32, 686-693. https://doi.org/10.1016/j.cemconcomp.2010.07.015
  16. Sahmaran, M., Keskin, S. B., Ozerkan, G., and Yaman, I. O. (2008), Self-healing of Mechanically-loaded Self Consolidating Concretes with High Volumes of Fly Ash, Cement & Concrete Composites, 30, 872-879. https://doi.org/10.1016/j.cemconcomp.2008.07.001
  17. Sahmaran, M., Yildirim, G., and Erdem, T. K. (2013), Self-healing Capability of Cementitious Composites Incorporating Different Supplementary Cementitious Materials, Cement & Concrete Composites, 35, 89-101. https://doi.org/10.1016/j.cemconcomp.2012.08.013
  18. Tang, W., Kardani, O., and Cui, H. (2015), Robust Evaluation of Self-healing Efficiency in Cementitious Materials-A Review, Construction and Building Materials, 81, 233-247. https://doi.org/10.1016/j.conbuildmat.2015.02.054
  19. Tittelboom, K. V., Gruyaert, E., Rahier, H., and Belie, N. D. (2012), Influence of Mix Composition on the Extent of Autogenous Crack Healing by Continued Hydration or Calcium Carbonate Formation, Construction and Building Materials, 37, 349-359. https://doi.org/10.1016/j.conbuildmat.2012.07.026
  20. Turk, K. (2012), Viscosity and Hardened Properties of Self-compacting Mortars with Binary and Ternary Cementitious Blends of Fly Ash and Silica Fume. Construction and Building Materials, 37, 326-334. https://doi.org/10.1016/j.conbuildmat.2012.07.081
  21. Wu, M., Johannesson, B., and Geiker, M. (2012), A Review: Self-Healing in Cementitious Materials, and Engineered Cementitious Composite as a Self-healing Materials, Construction and Building Materials, 28, 571-583. https://doi.org/10.1016/j.conbuildmat.2011.08.086
  22. Zhong, W., and Yao, W. (2008), Influence of Damage Degree on Self-healing of Concrete, Construction and Building Materials, 22, 1137-1142. https://doi.org/10.1016/j.conbuildmat.2007.02.006