DOI QR코드

DOI QR Code

Fracture Property of Concrete on Spherical and Flat Nose Shape Projectile Impact

반구형과 평탄형 선단 비상체의 충돌을 받는 콘크리트의 파괴특성

  • 이상규 (충남대학교 건축공학과) ;
  • 김규용 (충남대학교 건축공학과) ;
  • 김홍섭 (충남대학교 건축공학과) ;
  • 손민재 (충남대학교 건축공학과) ;
  • 남정수 (동경공업대학 프론티어 재료연구소)
  • Received : 2016.09.08
  • Accepted : 2016.10.19
  • Published : 2016.11.01

Abstract

In this study, projectiles with 2 kinds of nose shape: spherical and flat were impacted into normal concrete and fiber reinforced concrete panels. The fracture depth and form, crater diameter, tensile strain at rear face were evaluated. It was confirmed that smaller projectile nose areas resulted in deeper penetrations associated with concentrated impact forces and small front-face crater diameters in impact test. Conversely, larger projectile nose areas resulted in shallower penetrations and larger front-face fracture diameters. Similar front-face failure and strain distribution relationships based on the projectile nose shape were observed for normal and fiber-reinforced concrete although the rear-face tensile strain and scabbing were significantly reduced by the fiber reinforcement. In addition, a direct relationship was confirmed between the penetration depth based on the projectile nose shape and the tensile strain on the rear face. Thus the impact strain behavior is required to predict the scabbing behavior with penetration depth.

본 연구에서는 반구형과 평탄형의 비상체를 이용하여 일반콘크리트와 섬유보강콘크리트에 충격시험을 진행한 후 파괴깊이와 형태, 파괴직경, 배면의 인장변형을 평가하였다. 선단면적이 작을수록 충격력의 집중에 의해 파괴깊이는 크고 표면파괴 직경은 작게 되는 것으로 확인되었다. 반면에 선단면적이 클수록 파괴깊이는 작지만 표면파괴직경은 크게 되었다. 일반콘크리트와 섬유보강 콘크리트에서 유사한 표면파괴와 배면변형이 발생하였으나 인장변형의 크기는 일반콘크리트에 비해 섬유보강 콘크리트가 작은 것으로 나타났다. 또한, 비상체의 선단형상에 따른 표면관입의 형태와 배면의 인장변형 사이에 직접적인 연관이 있는 것으로 사료된다. 따라서 콘크리트의 배면박리한계두께 예측 시에는 표면관입깊이뿐만 아니라 배면의 변형거동 또한 고려할 필요성이 있을 것으로 사료된다.

Keywords

References

  1. Abdel-Kader, M., and Fouda, A. (2014), Effect of reinforced on the response of concrete panels to impact of hard projectile. Int J Impact Eng, 63, 1-17. https://doi.org/10.1016/j.ijimpeng.2013.07.005
  2. Almusallam, T. H., Siddiqui, N. A., Iqbal, R. A., and Abbas, H. (2013), Response of hybrid-fiber reinforced concrete slabs to hard projectile impact. Int J Impact Eng, 58, 17-30. https://doi.org/10.1016/j.ijimpeng.2013.02.005
  3. Anderson, W. F., Watson, A. J., and Armstrong, P. J. (1984), Fiber reinforced concretes for the protection of structures against high velocity impact. In: Morton J, editor. Proceedings of the international conference on structural impact and crashworthiness. London: Imperial college, London, 687-695.
  4. Barr, P. (1990), Guidelines for the design and assessment of concrete structures subjected to impact. Report. London: UK Atomic Energy Authority, Safety and Reliability Directorate, HMSO, 43.
  5. Choi, H., Chung, C. H., and Kim, S. Y. (2011), Effect of reinforcement ratio and impact velocity on local damage of RC slabs. Journal of Korean Society of Civil Engineering, A, 31(4A), 311-321.
  6. Clifton, J. R. (1982), Penetration resistance of concrete-A review. National Bureau of Standards. Washington DC: Special Publication, 480-545.
  7. Goldsmith, W. (1999), Non-ideal projectile impact on targets. Int J Impact Eng, 22, 95-395. https://doi.org/10.1016/S0734-743X(98)00031-1
  8. Guirgis, S., and Guirgis, E. (2009), An energy approach study of the penetration of concrete by rigid missiles. Nucl Eng Des, 239, 819-829. https://doi.org/10.1016/j.nucengdes.2008.11.016
  9. Hughes, G. Hard missile impact on reinforced concrete. Nucl Eng Des, 77(1), 23-35.
  10. Halda,r A. (1984), Hamieh H. Local effect of solid missiles on concrete structures. ASCE J Struct Div, 110(5), 948-960. https://doi.org/10.1061/(ASCE)0733-9445(1984)110:5(948)
  11. Li, Q. M., Reid, S. R., Wen, H. M., and Telford, A. R. (2005), Local impact effects of hard missiles on concrete targets. Int J Impact Eng, 32(1-4), 224-84. https://doi.org/10.1016/j.ijimpeng.2005.04.005
  12. NDRC. Summary technical report of division 2. (1946), Effects of impact and explosion,. Washington, DC: National Defense Research Committee, 1, 512.
  13. Shiu, W., Donze, F. V., and Daudeville, L. (2008), Penetration prediction of missiles with different nose shapes by the discrete element numerical approach. Computers and Structures, 86, 2079-2086. https://doi.org/10.1016/j.compstruc.2008.03.003
  14. Siddiqui, N. A., Khateeb, B. M., Almusallam, T. H., Al-Salloum, Y. A., Iqbal, R. A., and Abbas, H. (2014), Reliability of RC shielded steel plates against the impact of sharp nose projectiles. International Journal of Impact Engineering, 69, 122-135. https://doi.org/10.1016/j.ijimpeng.2014.03.001
  15. Tai, Y. S. (2009), Flat ended projectile penetrating ultra-high strength concrete plate target. Theor Appl Fracture Mech, 51(2), 117-128. https://doi.org/10.1016/j.tafmec.2009.04.005
  16. Wen, H. M., and Jones, N. (1992), Semi-empirical equations for the perforation of plates struck by a mass. Struct Under Shock Impact, II, 369-380.
  17. Zhang, M. H, Shim, V. P. W., Lu, G., and Chew, C. W. (2005), Resistance of high-strength concrete to projectile impact. Int J Impact Eng, 31, 825-41. https://doi.org/10.1016/j.ijimpeng.2004.04.009