DOI QR코드

DOI QR Code

Computational analysis of pollutant dispersion in urban street canyons with tree planting influenced by building roof shapes

  • Bouarbi, Lakhdar (Laboratoire de mecanique appliquee, Faculte de genie mecanique, Universite des sciences et de la technologie d'Oran - Mohamed-Boudiaf) ;
  • Abed, Bouabdellah (Laboratoire de mecanique appliquee, Faculte de genie mecanique, Universite des sciences et de la technologie d'Oran - Mohamed-Boudiaf) ;
  • Bouzit, Mohamed (Laboratoire de mecanique appliquee, Faculte de genie mecanique, Universite des sciences et de la technologie d'Oran - Mohamed-Boudiaf)
  • Received : 2015.11.27
  • Accepted : 2016.09.12
  • Published : 2016.12.25

Abstract

The objective of this study is to investigate numerically the effect of building roof shaps on wind flow and pollutant dispersion in a street canyon with one row of trees of pore volume, $P_{vol}=96%$. A three-dimensional computational fluid dynamics (CFD) model is used to evaluate air flow and pollutant dispersion within an urban street canyon using Reynolds-averaged Navier-Stokes (RANS) equations and the Explicit Algebraic Reynolds Stress Models (EARSM) based on k-${\varepsilon}$ turbulence model to close the equation system. The numerical model is performed with ANSYS-CFX code. Vehicle emissions were simulated as double line sources along the street. The numerical model was validated by the wind tunnel experiment results. Having established this, the wind flow and pollutant dispersion in urban street canyons (with six roof shapes buildings) are simulated. The numerical simulation results agree reasonably with the wind tunnel data. The results obtained in this work, indicate that the flow in 3D domain is more complicated; this complexity is increased with the presence of trees and variability of the roof shapes. The results also indicated that the largest pollutant concentration level for two walls (leeward and windward wall) is observed with the upwind wedge-shaped roof. But the smallest pollutant concentration level is observed with the dome roof-shaped.

Keywords

References

  1. Ahmadi, G. and Li, A. (2000), "Computer simulation of particle transport and deposition near a small isolated building", J. Wind Eng. Ind. Aerod., 84(1), 23-46. https://doi.org/10.1016/S0167-6105(99)00048-3
  2. ANSYS CFX-Solver Theory Guide (2013).
  3. Baik, J.J. and Kim, J.J. (1999), "A numerical study of flow and pollutant dispersion characteristics in urban street canyons", J. Appl. Meteorol., 38, 1576-1589. https://doi.org/10.1175/1520-0450(1999)038<1576:ANSOFA>2.0.CO;2
  4. Becker, S., Lienhart, H. and Durst, F. (2002), "Flow around three-dimensional obstacles in boundary layers", J. Wind Eng. Ind. Aerod., 90(4-5), 265-279. https://doi.org/10.1016/S0167-6105(01)00209-4
  5. Buccolieri, R., Gromke, C., Di Sabatino, S. and Ruck, B. (2009), "Aerodynamic effects of trees on pollutant concentration in street canyons", Sci. Total Environ., 407(19), 5247-5256. https://doi.org/10.1016/j.scitotenv.2009.06.016
  6. Buccolieri, R., Salim, S.M., Leo, L.S., Di Sabatino, S., Chan, A. and Ielpo, P. (2011), "Analysis of local scale tree-atmosphere interaction on pollutant concentration in idealized street canyons and application to a real urban junction", Atmos. Environ., 45(9), 1702-1713. https://doi.org/10.1016/j.atmosenv.2010.12.058
  7. Cai, X.M., Barlow, J.F. and Belcher, S.E. (2008), "Dispercsion and transfer of passive scalar sin and above street canyons -large-eddy simulations", Atmos. Environ., 42(23), 5885-5895. https://doi.org/10.1016/j.atmosenv.2008.03.040
  8. Chan, T.L., Dong, G., Leung, C.W., Cheung, C.S. and Hung, W.T. (2002), "Validation of a two- dimensional pollutant dispersion model in an isolated street canyon", Atmos. Environ., 36(5), 861-872. https://doi.org/10.1016/S1352-2310(01)00490-3
  9. Chang ,C. and Meroney, R.N. (2003), "Concentration and flow distributions in urban street canyons: wind tunnel and computational data", J. Wind Eng. Ind. Aerod., 91(9), 1141-1154. https://doi.org/10.1016/S0167-6105(03)00056-4
  10. CODASC (Concentration Data of Street Canyons). (2008), Laboratory of Building- and Environmental Aerodynamics, IfH, Karlsruhe Institute of Technology.
  11. Di Sabatino, S., Buccolieri, R., Pulvirenti, B. and Britter, R. (2008), "Flow and pollutant dispersion in street canyons using FLUENT and ADMS-Urban", Environ. Model. Assessment, 13(3), 369-381. https://doi.org/10.1007/s10666-007-9106-6
  12. Eliasson, I., Offerle, B., Grimmond, C.S.B. and Lindqvist, S. (2006), "Wind fields and turbulence statistics in an urban street canyon", Atmos. Environ., 40(1), 1-16. https://doi.org/10.1016/j.atmosenv.2005.03.031
  13. Gerdes, F. and Olivarin, D. (1999), "Analysis of pollutant dispersion in an urban street canyon", J. Wind Eng. Ind. Aerod., 82(1-3), 105-124. https://doi.org/10.1016/S0167-6105(98)00216-5
  14. Gromke, C. and Blocken, B. (2015a), "Influence of avenue-trees on air quality at the urban neighborhood scale. Part I: Quality assurance studies and turbulent Schmidt number analysis for RANS CFD simulations", Atmos. Environ., 196, 214-223.
  15. Gromke, C. and Blocken, B. (2015b), "Influence of avenue-trees on air quality at the urban neighborhood scale. Part II: Traffic pollutant concentrations at pedestrian level", Atmos. Environ., 196, 214-223.
  16. Gromke, C. and Ruck, B. (2007), "Influence of trees on the dispersion of pollutant in an urban street canyon-experimental investigation of the flow and concentration field", Atmos. Environ., 41(16), 3287-3302. https://doi.org/10.1016/j.atmosenv.2006.12.043
  17. Gromke, C. and Ruck, B. (2009), "On the impact of trees on dispersion processes of traffic emissions in street canyons", Bound. - Lay. Meteorol., 131(1), 19-34. https://doi.org/10.1007/s10546-008-9301-2
  18. Gromke, C. and Ruck, B. (2012), "Pollutant concentrations in street canyons of different aspect ratio with avenues of trees for various wind directions", Bound. - Lay. Meteorol., 144(1), 41-64. https://doi.org/10.1007/s10546-012-9703-z
  19. Gromke, C., Buccolieri, R., Di Sabatino, S. and Ruck, B. (2008), "Dispersion study in a street canyon with tree planting by means of wind tunnel and numerical investigations-evaluation of CFD data with experimental data", Atmos. Environ., 42(37), 8640-8650. https://doi.org/10.1016/j.atmosenv.2008.08.019
  20. Hanna, S.R., Tehranian, S., Carissimo, B., Macdonald, R.W. and Lohner, R. (2002), "Comparisons of model simulations with observations of mean flow and turbulence within simple obstacle arrays", Atmos. Environ., 36(32), 5067-5079. https://doi.org/10.1016/S1352-2310(02)00566-6
  21. Huang, Y., Hu, X. and Zeng, N. (2009), "Impact of wedge-shaped roofs on airflow and pollutant dispersion inside urban street canyons", Build. Environ., 44 (12), 2335-2347. https://doi.org/10.1016/j.buildenv.2009.03.024
  22. Hunter, L.J., Johnson, G.T. and Watson, I.D. (1992), "An investigation of three-dimensional characteristics of flow regimes within the urban canyon", Atmos. Environ., 26(4), 425-432. https://doi.org/10.1016/0957-1272(92)90049-X
  23. Kastner-Klein, P. and Plate, E.J. (1999), "Wind-tunnel study of concentration fields in street canyons", Atmos. Environ., 33(24-25), 3973-3979. https://doi.org/10.1016/S1352-2310(99)00139-9
  24. Kastner-Klein, P., Fedorovich, E. and Rotach, M.W. (2001), "A wind tunnel study of organised and turbulent air motions in urban street canyons ", J. Wind Eng. Ind. Aerod., 89(9), 849-861. https://doi.org/10.1016/S0167-6105(01)00074-5
  25. Kim, J.J. and Baik, J.J. (2003), "Effects of inflow turbulence intensity on flow and pollutant dispersion in an urban street canyon ", J. Wind Eng. Ind. Aerod., 91(3), 309-329. https://doi.org/10.1016/S0167-6105(02)00395-1
  26. Meroney, N.R., Leitl, B.M., Rafailidis, S. and Schatzmann, M. (1999), "Wind-tunnel and numerical modeling of flow and dispersion about several building shapes", J. Wind Eng. Ind. Aerod., 81(1-3), 333-345. https://doi.org/10.1016/S0167-6105(99)00028-8
  27. Meroney, R.N. (1982), "Turbulent diffusion near buildings. (Ed., E.J. Plate)", Engineering Meteorology, Elsevier, Amsterdam,. 425-481.
  28. Meroney, R.N., Pavageau, M., Rafadalis, S. and Schatzmann, M. (1996), "Study of line source characteristics for 2D physical modelling of pollutant dispersion in street canyons", J. Wind Eng. Ind. Aerod., 62(1), 37-56. https://doi.org/10.1016/S0167-6105(96)00057-8
  29. Moonen, P., Gromke, C. and Dorer, V. (2013), "Performance assessment of large eddy simulation (LES) for modelling dispersion in an urban street canyon with tree planting", Atmos. Environ., 75, 66-76. https://doi.org/10.1016/j.atmosenv.2013.04.016
  30. Nazridoust, K. and Ahmadi, G. (2006), "Airflow and pollutant transport in street canyons", J. Wind Eng. Ind. Aerod., 94(6), 491-522. https://doi.org/10.1016/j.jweia.2006.01.012
  31. Pavageau, M. and Schatzmann, M. (1999), "Wind tunnel measurements of concentration fluctuations in an urban street canyon", Atmos. Environ., 33(24-25), 3961-3971. https://doi.org/10.1016/S1352-2310(99)00138-7
  32. Sahm, P., Louka, P., Ketzel, M., Guillouteau, E. and Sini, J.F. (2002), "Intercomparison of numerical urban dispersion models. Part I: Street canyon and single building configurations", Water Air Soil Pollution Focus, 2(5), 587-601. https://doi.org/10.1023/A:1021349232026
  33. Salim, M.S., Riccardo, B., Andrew, C. and Silvana, D.S. (2011), "Numerical simulation of atmospheric pollutant dispersion in an urban street canyon: Comparison between RANS and LES", J. Wind Eng. Ind. Aerod., 89(2-3), 849-861.
  34. Santiago, J.L. and Martin, F. (2008), "SLP-2D: a new Lagrangian particle model to simulate pollutant dispersion in street canyons", Atmos. Environ., 42(17), 3927-3936. https://doi.org/10.1016/j.atmosenv.2007.05.038
  35. Sini, J.F., Anquetin, S. and Mestayer, G. (1996), "Pollutant dispersion and thermal effects in urban street canyons", Atmos. Enviro., 30(15), 2659-2677. https://doi.org/10.1016/1352-2310(95)00321-5
  36. Wallin, S. and Johansson, A. (2000), "A complete explicit algebraic Reynolds stress model for incompressible and compressible flows", J. Fluid Mech., 403, 89-132. https://doi.org/10.1017/S0022112099007004
  37. Xie, X.M., Huang, Z. and Wang, J.S. (2005), "Impact of building configuration on air quality in street canyon", Atmos. Environ., 39(25), 4519-4530. https://doi.org/10.1016/j.atmosenv.2005.03.043

Cited by

  1. A CFD modelling study of reactive pollutant dispersion in an urban street canyon vol.188, pp.1755-1315, 2018, https://doi.org/10.1088/1755-1315/188/1/012051