술폰화 공정을 통해 제조한 고분자 전해질형 연료전지용 폴리(아릴렌 이서 케톤) 블록 코폴리머

장혜리^{*} · 남기석^{*} · 유동진^{*,**,*}

*전북대학교 대학원, 공과대학교 에너지저장·변환공학과, 연료전지 시스템 전주기 R&D 고급트랙 사업단 및 수소연료전지센터, **전북대학교 생명과학과

(2016년 8월 11일 접수, 2016년 9월 9일 수정, 2016년 9월 19일 채택)

Poly(arylene ether ketone) block copolymer prepared through sulfonation process for polymer electrolyte membrane fuel cell

Hyeri Jang*, Keesuk Nahm*, Dongjin Yoo*****,†

*Graduate school, Department of Energy Storage-Conversion Engineering, R&D Education Center for Fuel Cell System-Whole Life Cycle R&D, and Hydrogen & Fuel Cell Research Center, Chonbuk National University, **Department of Biological Science, Chonbuk National University (Received 11 August 2016, Revised 9 September 2016, Accepted 19 September 2016)

요 약

본 연구에서는 술폰화된 sodium 5,5'-carbonylbis(2-fluorobenzene sulfonate) 단량체를 이용하여 친수성 올리고 머를 합성한 뒤 소수성 올리고머와 1:1로 공중합반응을 시켜 sulfonated poly(arylene ether ketone) (SPAEK) 공중합체를 합성하였다. 제조한 공중합체의 구조 분석은 ¹H-NMR, FT-IR, GPC를 사용하여 실시하였고, GPC에서 공중합체의 평균분자량은 209,700 g mol⁻¹, 다분산지수(PDI)는 1.25이었다. 열적 안정성을 확인하기 위하여 TGA 분석을 실시하였고, 200℃이상에서의 열 안정성을 확인하였다. 고분자 전해질 막의 양이온 전도도는 상대습도 100%, 80℃의 온도에서 약 9.0 mS cm⁻¹이었다. 측정된 결과로부터 본 연구에서 제조한 탄화수소계 전해질 막은 술폰화 정도를 증가시키거나 약간의 구조적 변형을 통해 연료전지용 고분자 전해질 막으로 적용 가능할 것으로 기대된다.

주요어 : 고분자전해질막, 공중합체, 폴리(아릴렌이써케톤), PEMFC

Abstract - In this study, a sulfonated poly(arylene ether ketone) block copolymer was prepared from hydrophilic oligomer and hydrophobic oligomer. The structure of the prepared membrane was characterized by ¹H-NMR, FT-IR and GPC. The M_w (weight-average molecular weights) of the polymer was 209,700 g mol⁻¹ and the molecular weight distribution(M_w/M_n) of 1.25 was obtained. The prepared membrane showed excellent thermal stability with gradual weight loss up to 200 °C. The proton conductivity of SPAEK block copolymer reached the maximum of 9.0 mS cm⁻¹ at 90 °C under 100% relative humidity (RH). From the observed results, it is necessary to do more aggressive attempt to study the possibility of application as an ion-conductive composite electrolyte.

Key words : polymer electrolyte membrane, poly(arylene ether ketone), PEMFC

[†]To whom corresponding should be addressed.

Tel : +82-63-270-3608 E-mail : djyoo@jbnu.ac.kr

1. 서 론

연료전지는 에너지를 저장하는 기존의 이차전지와 달 리 수소와 산소의 화학반응을 통해 발생하는 에너지를 전기로 변환시키는 발전장치로서, 산업용 전원으로부터 소비전원에 이르기까지 사용 가능한 최선의 대안으로 각 광을 받고 있으며, 연료전지 기반의 에너지 디바이스는 화석 연료계 수송 시스템을 대신할 수 있는 매력적인 해 결책으로 각광받고 있다[1, 2].

연소과정을 통한 발전과 달리, 연료 전지는 공해물질 을 생성하지 않으며 사용 시 발생하는 유일한 부산물은 물이다. 게다가 내연기관과 같은 작동 중 폭발현상이 없 어 소음이 없으며 전력효율이 30 ~ 40%에 온수로부터 회수되는 30 ~ 40%의 열효율을 더하여 70 ~ 80%의 발 전효율을 나타내고 있다[3].

연료전지는 사용하는 전해질의 재료와 운전온도에 따 라 분류할 수 있으며, 그 중 PEMFC는 휴대용과 수송용 장비에 적용하기 위한 새로운 전원 장치로 각광받고 있 다. PEMFC에서 사용되는 전해질은 H⁺를 전달하는 이온 교환막을 사용한다. 고분자 막은 연료극과 공기극 사이 에서 수소이온의 연결통로 역할을 함과 동시에 수소와 산소의 접촉을 막는 역할도 하고 있다 [4]. PEMFC용 고 분자 전해질 막으로써 대부분의 필요한 기능을 충족하는 고분자 막은 Dupont사의 Nafion 막으로 퍼플루오르술 폰산계 중합체에 기초한 막이다 [5, 6]. Nafion 막은 수소 이온 전도도가 높고 기계적 안정도, 화학적 안정성이 좋 은 반면, 높은 생산비용과 높은 연료 투과성 등의 단점으 로 인해 광범위한 적용이 방해되고 있다 [7].

이러한 나피온의 단점을 극복하기 위해서 최근에는 부 분불소계 또는 비불소계 탄화수소 고분자 전해질 막에 대한 연구가 활발히 이루어지고 있다 [8]. 비불소계 고분 자 소재들에 대한 연구는 주로 내열성 고분자를 기본골 격으로 하고 여기에 극성기를 도입하여 고분자 전해질로 서의 기능을 부여한 것으로써 극성기 도입에 의해 내열 성은 낮아지지만 기본골격의 평균적인 내열성을 반영하 여 200 ~ 400℃의 내열성을 가지게 된다. 대표적으로 polysulfone, polybenzimidazole, poly(aryl ether ketone) 등의 탄화수소계 고분자들의 연구가 활발히 진행 되고 있다[9].

본 연구에서는 술폰화과정을 통해 술폰산기를 포함한 단량체를 제조한 후, 술폰산 그룹을 포함하는 블록 공중 합체를 제조하였다. 제조된 고분자는 DMSO(dimethyl sulfoxide)용매를 사용하여 제막하였다. 제조된 전해질 막은 ¹H-NMR, GPC, FT-IR을 통하여 폴리머 구조 분석 을 확인하였으며, TGA를 통해 열적 안정성을 확인하였 다. 또한, 수소이온전도도 분석을 통해 고분자 전해질막 으로서의 성능을 평가하였다.

2. 실 험

2-1. 시약

4,4'-difluorobenzophenone, 4,4'-(hexafluoroisopropylidene)diphenol, 4,4'-dihydroxybenzophenone, 4,4'dichlorobenzopheneone, 30% fuming sulfuric acid, anhydrous potassium carbonate (K₂CO₃), N,N-dimethylacetamide (DMAc)와 dimethyl sulfoxide (DMSO), 톨루 엔은 Aldrich사에서 구입하였으며, 사용 전 60℃에서 진 공건조 후 수분을 제거하고 사용하였다.

2-2. 술폰화된 단량체(SDFBP)의 합성

1구 둥근플라스크에 4,4'-difluorobenzophenone를 10.9 g(51 mmol)과 30% 발연황산 20 mL를 천천히 첨가 하여 130℃에서 10시간동안 교반하였다.

10시간 후 반응물을 실온으로 완전히 식혀준 후 얼음 물에 천천히 첨가하여 교반시킨다. 그 후 수산화소듐 (NaOH)을 사용하여 반응물을 중화시킨다. 반응물이 pH 7에 도달하면 염화소듐(NaCl) 20 g을 넣고 12시간동안 교반시켜준다. 생성된 침전물은 물과 에탄올이 혼합된 용매를 사용하여 수차례 씻어주며 걸러 주었다. 그렇게 얻어진 sodium 5,5'-carbonylbis(2-fluorobenzophenone sulfonate)는 80℃의 진공 오븐에서 15시간 건조시켰다 [10]: ¹H-NMR (600 MHz, DMSO-*d*₆) δ 8.05 (1H), 7.71 (1H), 7.31 (1H).

Scheme 1. Synthesis of SDFBP

2-3. 올리고머에 합성

친수성 올리고머(hydrophilic oligomer)를 합성하기 위해 100 mL 둥근 플라스크에 sodium 5,5' -carbonylbis(2-fluorobenzene sulfonate) (SDFBP, 4.00 g, 9.62 mmol), 4,4'-dihydroxybenzophenone (DHBP, 2.47 g, 11.5 mmol), K₂CO₃ (3.2 g, 23.07 mmol)을 첨가하고 DMAc 15 mL, 톨루엔 25 mL을 차례로 첨가하여 반응시 켜 주었다. 120℃에서 6시간동안 질소 하에 환류를 하였 고, 반응 중에 물과 부 반응이 일어나는 것을 막아주기 위 해 넣어준 톨루엔을 빼기 위해 160 ℃에서 반응시켜 주었 다. 톨루엔이 제거된 후 용액의 온도를 170 ~ 180℃까지 올려 점성이 생길 때까지 24시간동안 반응하였다. 그 후 온도를 60℃까지 서서히 낮추고 700 mL의 혼합용매 (메 탄올/아세톤/증류수, 6:1:1, v /v /v)에 천천히 부어주었 다. 생성된 침전물은 필터를 통해 메탄올과 증류수로 수 차례 씻어준 후 100℃의 오븐에서 하루 동안 건조하였다 [11, 12]: FT-IR (KBr, cm⁻¹) 3749, 3454, 3055, 2998, 2915, 2852, 2828, 2731, 2663, 2600, 2571, 2493, 2353, 2314, 2083, 1851, 1775, 1648, 1585, 1483, 1431, 1354, 1315, 1198, 1114, 1067, 1021, 954, 923, 881, 837, 766, 722, 703, 676, 618, 570, 533, 497, 480, 459, 439, 422, 404; ¹H-NMR (600 MHz, DMSO-*d*₆) δ 8.1 (2H), 7.95 (2H), 7.89-7.8 (4H), 7.36-7.28 (4H), 7.05-7.0 (2H).

소수성 올리고머(Hydrophobic oligomer)는 4,4'-dich-

lorobenzopheneone(DBP, 4.00 g, 15.93 mmol), 4,4'-(hexafluoroisopropylidene)diphenol (6F-BPA, 6.43 g, 19.12 mmol), K₂CO₃(5.29 g, 38.23 mmol)에 DMAc 15 mL, 톨루엔 25 mL 를 첨가하여 친수성 올리고머와 마찬가지 로 반응시켜 주었다: FT-IR (KBr, cm⁻¹) 3601, 3164, 3094, 3066, 2967, 2926, 2869, 2776, 2686, 2587, 2499, 2464, 2440, 2275, 2218, 2175, 2107, 2083, 2031, 1910, 1797, 1775, 1634, 1579, 1486, 1406, 1321, 1297, 1242, 1150, 1103, 1071, 1010, 952, 870, 836, 796, 718, 626, 560, 519, 408; ¹H-NMR (600 MHz, DMSO-*d*₆) & 7.8 (4H), 7.4 (4H), 7.2 (8H).

2-4. SPAEK-50 블록 공중합체 합성

술폰화된 poly(arylene ether ketone) 공중합체의 합성 은 다음과 같다. SPAEK-50은 친수성 올리고머 (4 g, 0.084 mmol)와 소수성 올리고머 (4.4 g, 0.084 mmol), decafluorobiphenyl을 첨가하고 반응 용매인 톨루엔 20 mL와 DMAc 20 mL를 주입하였다. 여기서의 반응조건 과 work-up 과정은 일련의 올리고머의 합성과정과 마찬 가지로 진행하였다. SPAEK-50: FT-IR (KBr, cm⁻¹) 3458, 3052, 2929, 2579, 2425, 2450, 2294, 2220, 2195, 2119, 2087, 2044, 1906, 1654, 4590, 1501, 1418, 1356, 1313, 1205, 1246, 1172, 1134, 1064, 1018, 965, 927, 874, 833, 766, 736, 704, 676, 567, 524, 497; ¹H-NMR (600

Scheme 2. Synthesis of hydrophilic, hydrophobic oligomer, and SPAEK-50 copolymer.

MHz, DMSO-*d*₆) δ 8.12 (2H), 7.95 (2H), 7.89-7.7 (8H), 7.4-7.3 (8H), 7.23-7.12 (8H), 7.14 (4H), 7.1-7.0 (2H).

2-5. 전해질막의 제조

DMSO (10 mL) 용매에 SPAEK 공중합체 0.5 g을 넣 어 완전히 녹을 때까지 120℃에서 교반하였다. 그 후 유 리판(glass plate)에 제막하여 80℃에서 16시간 진공건조 하였고, 건조된 막의 산성화를 위하여 24시간동안 상온 의 1.0 M H₂SO₄ 용액에 담가두었다. 산성화 과정을 거친 복합막은 잔여 황산을 제거하기 위해 3차 증류수에 수차 례 세척한 후 증류수로 채운 바이알에 보관하였다.

2-6. 특성분석

공중합체의 구조 분석을 위하여 FT-IR(Fourier transform infrared) 스펙트럼 측정하였으며 Nicolet Impact 400 FTIR spectrometer를 사용하였다. ¹H-NMR 스펙트 럼은 JNM-ECA600 instrument (JEOL Ltd.)를 사용하여 측정하였고 샘플들은 중수소로 치환된 DMSO-d6에 용 해시켜 실온에서 측정하였다. Gel permeation chromatography (GPC)는 Tosoh Corporation (HLC-8320GPC) 을 사용하여 합성물질의 평균 분자량을 측정하였다. 열 안정성 분석을 위해 질소가스 하에서 열 중량 분석기 (TA instrument, Q50)를 사용하였으며, 5 °C min⁻¹의 승온 속 도로 30 °C 에서 800 °C 까지 승온하여 온도에 따른 중량의

변화를 측정하였다. TGA 측정 전 막에 남아있는 습기를 제거하기 위해 100℃ 오븐에서 12시간 동안 건조하였다. 고분자 전해질 막의 수소 이온 전도도 측정을 위한 측 정 환경은 상대가습 100% 에서 30℃ ~ 80℃의 온도범위 에서 측정하였다. 이온 전도도 측정 전 모든 막은 약24시 간동안 3차 증류수에 담가 두었다. 측정 장비로는 Bekk Tech conductivity measurement system을 사용하였고 4-point probe 방법으로 in-plane 저항을 측정한 후, 시료 의 두께를 고려하여 수소 이온 전도도(mS cm⁻¹)로 나타 내었다.

3. 결 과

3-1. SPAEK-50 공중합체의 합성과 특성분석

Scheme 1에 나타낸 바와 같이 술폰화된 단량체를 합 성하였고, 이를 이용하여 친수성 중합체를 제조하여 (Scheme 2) 소수성 중합체와 1:1의 비율로 반응하였다. 합성 온도와 합성 시간은 올리고머의 합성과정과 마찬가 지로 진행하였다. 제조된 공중합체의 핵자기 공명 스펙 트럼은 Fig. 1에 나타내었으며 7.0 ~ 8.1 ppm의 범위에 서 피크가 확인되었다. 술폰산 그룹에 의한 피크는 8.1, 7.8 및 7.1의 피크로 각각 확인하였다.

Fig. 2 에서는 제조된 공중합체의 작용기를 확인하기 위해 실시한 적외선 분광법 그래프를 나타내었다. 1067

Figure 1. ¹H-NMR spectra of (1) SPAEK-50 copolymer; (2) hydrophilic oligomer; (3) hydrophobic oligomer

Polymers	M_n [g mol ⁻¹]	M_w [g mol ⁻¹]	M_{max} [g mol ⁻¹]	PDI
Hydrophilic oligomer	31500	47600	74500	1.50
Hydrophobic oligomer	41500	52800	228500	1.27
SPAEK-50	167200	209700	262100	1.25

Table 1. Gel permeation chromatography(GPC) data of hydrophilic, hydrophobic oligomer and SPAEK-50 copolymer

Figure 2. FT-IR spectra of (1) SPAEK-50 copolymer; (2) hydrophobic oligomer; (3) hydrophilic oligomer

cm⁻¹과 1018 cm⁻¹에서 보이는 피크는 O=S=O의 symmetric 과 asymmetric 진동에 의한 것이며, 1246 cm⁻¹, 1172 cm⁻¹에 나타나는 피크는 벤젠링의 ─O─ 과 ─CF₃ 흡수 밴드에 의한 것이다. 방향족 그룹 내에 존재하는 C =C에 관련된 밴드에 의한 피크는 1501 cm⁻¹과 1590 cm⁻¹이다. 보통 케톤기와 관련된 흡수 밴드 값은 1715 cm⁻¹에 나타나지만, 이 고분자의 C=O 흡수 밴드의 피크 는 1654 cm⁻¹에서 확인되었다 [13, 14].

합성된 친수성 올리고머와 소수성 올리고머의 분자량 정보를 얻기 위해 실시한 겔 투과 크로마토그래피 측정 은 DMF에 용해하여 수행하였으며 그 데이터를 Table 1 에 요약하였다. 친수성 올리고머와 소수성 올리고머는 각 47,600 g mol⁻¹, 52,800 g mol⁻¹의 평균분자량 (M_w)을 얻었으며, SPAEK 공중합체의 평균분자량은 209,700 g mol⁻¹로 확인되었다. 공중합체의 최대평균분자량(M_{max}) 은 262,200 g mol⁻¹로 확인되었고, 167,200 Da의 수평균 분자량이 얻어졌으며, 1.25의 다분산 지수(poly dispersity index)를 나타내었다.

TGA를 이용하여 SPAEK-50 공중합체의 열적 안정성

Figure 3. TGA curves of SPAEK-50 and Nafion 117 membranes

을 확인하였으며, 그 결과는 Fig. 3에 나타내었다. 열 중 량 분석법은 질소 분위기하에 30 ~ 800℃의 온도 범위 에서 5℃씩 승온하며 측정하였다. TGA 곡선은 3단계에 걸친 분해(degradation) 양상이 나타난다.

먼저, (i) 30 ~ 200℃ 범위에서 술폰산 그룹에 흡착 되었던 수분 증발로 인한 무게감소를 확인할 수 있다. (ii) 230℃ ~ 400℃사이의 무게 감소는 술폰산 그룹에 손실에 의한 무게감소이며, (ii) 약 450℃ 부근에서 일어 나는 질량 감소는 주 사슬의 깨짐으로 인한 특성으로 예 상할 수 있다. 제조된 SPAEK-50 공중합체 막은 200℃이 상에서 열적 분해가 나타나는 것을 관찰할 수 있었고 때 문에 고분자 전해질형 연료전지 응용을 위하여 매우 적 합한 열적 특성을 갖고 있다. 또한, 나피온 막의 TGA 그 래프와 비교하였을 때 공중합체의 무게 감소량이 더 적 고, 더 높은 열적 안정성을 보이는 것을 확인할 수 있으며, 일반적으로 지방족화합물(Nafion)에 비해 방향족 화합 물(본 SPAEK 공중합체)의 열적 안정성이 더 높은 것으 로 알려져 있다.

Fig. 4는 제조된 SPAEK-50 전해질 막을 100% 가습조 건에서 온도변화에 따른 이온 전도성을 나타낸 그래프이

Figure 4. Proton conductivity of SPAEK-50 membrane under 100% RH

다 [15, 16]. 30, 60, 90 ℃에서의 이온 전도도 값은 각 온 도 당 3시간으로 고정시킨 후 측정된 평균값을 기재하였 으며, 각각의 온도에서 4.8, 5.6 및 9.0 mS cm⁻¹의 특성이 나타났다. 이는 전해질 막의 상업화를 위한 만족할만한 수치는 아니나, 온도에 따른 이온전도도가 증가하는 양 상을 확인한 실험으로써 가치가 있으며, 탄화수소계 방 향족 고분자내에 도입된 술폰산 그룹이 물 분자를 흡수 하고, 온도가 증가할수록 함수능력이 증가하여 친수성고 분자와 소수성고분자 사이에 블록을 형성함으로써 양이 온 교환 통로가 형성되었음을 예상할 수 있다 [17]. 향후, 고온에서 작동되면서 이온 전도도가 보다 향상된 연구가 기대된다.

4. 결 론

본 연구에서는 술폰화된 sodium 5,5'-carbonylbis(2-fluorobenzene sulfonate) 단량체를 이용하여 친수성 올리 고머를 합성한 뒤 소수성 올리고머와 공중합 반응을 통 해 평균분자량이 209,700 g mol⁻¹인 술폰화된 폴리(아릴 렌 이써 케톤)의 공중합체 막을 제조하였다. 제조한 공중 합체는 FT-IR과 ¹H-NMR을 사용하여 그 구조를 분석하 였고, 술폰산 그룹의 존재를 확인하였다. TGA를 통한 열 안정성 실험결과, 200℃ 이상에서도 안정한 것이 확인되 있으며 나피온에 비해 무게 감소율이 적은 것으로 나타 났다. 고분자 전해질막의 양이온 전도도는 상대습도 100%, 90℃의 온도에서 약 9.0 mS cm⁻¹이었다. 본 연구 에서 제조하여 평가한 SPAEK 탄화수소계 전해질막의 술폰화정도를 증가시키거나 구조를 약간 변형시킨다면, 연료전지용 고분자 전해질막으로 사용될 가능성이 있다.

감사의 글

본 연구는 산업통상자원부(MOTIE)와 한국에너지기 술평가원(KETEP)의 지원을 받아 수행한 연구 과제입니 다 (No. 20164030201070).

References

- Park. J., Enomoto. K., Yamashita. T., Takagi. Y., 2013, Polymerization mechanism for radiation-induced grafting of styrene into alicyclic polyimide films for preparation of polymer electrolyte membranes, J. Membr. Sci. Vol. 438, pp. 1-7
- Hickner, M. A., Ghassemi, H., Kim, Y. S., Einsla, B. R., McGrath, J. E., 2004, Alternative Polymer System for Proton Exchange Membranes (PEMs), Chem. Rev, Vol. 104, No. 10, pp. 4587-4612
- Chang. K. C, 2012, Fuel cell, Magazine of the SAREK, Vol. 41, No. 6, pp. 11-11
- Rikukawa, M., Sanui, K., 2000, Proton-conducting polymer electrolyte membranes based on hydrocarbon polymers, Polym. Sci. Vol. 25, No. 10, pp. 1463-1502
- Mauritz, K., A., Moore, R., B., 2004, State of Understanding of Nafion, Chem. Rev. 104, No. 10, pp. 4535-4586
- Chengji, Z., Haidan, L., Ke, S., Xianfeng, Hongzhe, N., Zhe, W., Hui, N., 2006, Block sulfonated poly (ether ether ketone)s (SPEEK) ionomers with high ion-exchange capacities for proton exchange membranes, J. Pow. Sour. Vol. 162, No. 2, pp. 1003-1009
- Lei, W., Ke, L., Guangming, Z., Junqin, L., 2011, Preparation and properties of highly branched sulfonated poly(ether ether ketone)s doped with antioxidant 1010 as proton exchange membranes, J. Membr. Sci, Vol. 379, No. 1-2, pp. 440-448
- Song, J., M., Lee, S., Y., Woo, H., S., Shin, D., W., Sohn, J., Y., Lee, Y., M., Shin, J., H., 2014, EB-crosslinked SPEEK electrolyte membrane with 1,4-butanediol divinyl ether/triallyl isocyanurate for fuel cell application, J. Membr. Sci. Vol. 469, pp. 209-215
- Kobayashi, T., Rikukawa, M., Sanui, K., Ogata, N., 1998, Proton-conducting polymers derived from

poly(ether-etherketone) and poly(4-phenoxybenzoyl-1,4-phenylene), Solid State Ionics. Vol. 106, No. 3-4, pp. 219-225

- Wang, F., Chen, T., Xu, T., 1998, Sodium sulfonatefunctionalized poly(ether ether ketone)s, Macromol. Chem. Phys. Vol. 199, No. 7, pp. 1421-1426
- Schauer, J. Brozova., L., 2005, Heterogeneous ionexchange membranes based on sulfonated poly(1,4phenylene sulfide) and linear polyethylene: preparation, oxidation stability, methanol permeability and electrochemical properties, J. Membr. Sci. Vol. 250, No. 1-2, pp. 151-157
- Zhao, Y., Yin. J., 2010, Synthesis and evaluation of all-block-sulfonated copolymers as proton exchange membranes for fuel cell application, 2010, J. Membr. Sci. Vol. 351, No. 1-2, pp. 28-35
- Park, S., Ruoff. R., S., 2009, Chemical methods for the production of graphenes, Nat Nanothechnol. Vol. 4, pp. 217-224
- Guo, W., Li, X., Wang, H., Pang, J., Wang, G., Jiang. Z., 2013, Synthesis of branched sulfonated poly(aryl ether ketone) copolymers and their proton exchange membrane properties, J. Membr. Sci. Vol. 444, pp. 259-267
- Kopitzke, R., W., Linkous. C., A., 2000, Conductivity and water uptake of aromatic-based proton exchange membrane electrolyte, J. Electrochem. Soc., Vol. 147, No. 5, pp. 1677-1681
- Kumar, G., G., Kim, A., R., Nahm, K., S., Yoo. D., J., Elizabeth. R., 2010, High ion and lower molecular transportation of the poly vinylidene fluoride-hexa fluoro propylene hybrid membranes for the high temperature and lower humidity direct methanol fuel cell applications, J. Pow. Sour, Vol. 195, No. 18, pp. 5922-5928
- Chu, J., Y., Kim, A., R., Nahm, K., S., Lee, H., K., Yoo, D., J., 2013, Synthesis and characterization of partially fluorinated sulfonated poly(arylene biphenylsulfone ketone) block copolymers containing 6F-BPA and perfluorobiphenylene units, J. Hydrogen, Energy, Vol. 38, No. 14, pp. 6268-6274