DOI QR코드

DOI QR Code

Anaysis of Elasto-plastic Deforming of Sturcture by Hydrodynamic Force Using Fluid Structure Interaction Method

유체-고체 연성 해석 기법을 통해 유체에 의한 고체의 탄소성 거동 해석 연구

  • Received : 2016.08.17
  • Accepted : 2016.10.28
  • Published : 2016.11.01

Abstract

This paper presents numerical investigation on behaviors of the rear cover in the vertical launcher under rocket plume loading by using fluid-structure interaction analysis. The rocket plume loading is modeled by the fully Eulerian method and elasto-plastic behavior of the rear cover is predicted by the total Lagrangian method based on a 9-node planar element. The interface motion and boundary conditions are described by a hybrid particle level-set method within the ghost fluid framework. The present results will be compared with the experimental data in the future.

본 연구에서는 발사체를 보관하고 사출하는 수직 발사대에서 발사체의 화염에 의해 변형되는 발사대 후방덮개의 응답을 유체-고체 연성해석 기법을 이용하여 해석하였다. 발사체의 화염은 Eulerian 기법을 이용하여 해석하였고, 탄소성 변형이 일어나는 후방 덮개는 9절점 유한 요소 기법을 사용하여 해석하였다. 유체와 고체 물질간의 경계면 추적은 레벨 셋 기법을 사용하였고 경계값은 가상유체 기법을 이용하여 결정하였다. 각 해석 기법들은 이론값들을 통하여 검증되었고, 후방 덮개의 해석 결과는 후방 덮개가 변형되는 시간을 비교하였다.

Keywords

References

  1. Yagla, J. J., "Internal Ballistics of Weapon Launching Systems," Naval Engineers Journal, Vol. 95, May 1983, pp.178-191. https://doi.org/10.1111/j.1559-3584.1983.tb01636.x
  2. Walker, R. E., Stone, A. R., and Shandor, M., " Secondary Gas Injection in a Conical Rocket Nozzle," AIAA Journal, Vol. 1, Feb. 1963, pp.334-338. https://doi.org/10.2514/3.1533
  3. Moorhead, S. B., "The Latest in Ship Weapon Launchers-the Vertical Launching System," Naval Engineers Journal, Vol. 93, April 1981, pp.90-96.
  4. Yagla, J. J, and Andreson, L. P., "Internal Ballistics and Missile Launch Environment for the Vertical Launching System", 3rd Joint Thermophysics, Fluids, Plasma and Heat Transfer Conference, 1982, pp. 1-15.
  5. Fadlum, E. A., Verzicco, R., Orlandi, P., and Mohd-Yusof, J. "Combinded Immersed-Boundary Finite-Difference Methods for Three-Dimensional Complex Flow Simulations," Journal of Computational Physics, Vol. 161, 2000, pp. 35-60 https://doi.org/10.1006/jcph.2000.6484
  6. Hu, X. Y., and Khoo, B. C., "An interface interaction method for compressible multifluids," Journal of Computational Physics, Vol. 198, 2004, pp.35-64. https://doi.org/10.1016/j.jcp.2003.12.018
  7. Gwak, M. C., Lee, Y. H., Kim, K. H., and Yoh, J. J., "Deformable Wall Effects on the Detonation of Combustible gas Mixture in a Thin-walled Tube", International Journal of Hydrogen Energy, Vol. 40, 2015, pp. 3006-3014. https://doi.org/10.1016/j.ijhydene.2014.12.127
  8. Gwak, M. C., Lee, Y. H., and Yoh, J. J., "Numerical Investigation of Kerosene-Based Pulse-Detonation Loading on the Metal Tubes", Journal of Propulsion and Power, 2016, pp. 1-7.
  9. Neto, E. A. S., Peric, D., and Owen, D. R. J., Computational methods for Plasticity, John Wiley & Sons, Ltd, Publication, United Kingdon, 2008, pp. 357-382.
  10. Cai, W., Thakre, P., and Yang, V., "A Model of AP/HTPB Composite Propellant Combustion in Rocket-Motor Environments", Combustion Science and Technology, Vol. 180, 2008, pp. 2143-2169. https://doi.org/10.1080/00102200802414915
  11. Skews, B. W., Atkins, M. D., and Seitz, M. W., "The impact of a shock wave on porous compressible foams", Journal of Fluid Mechanics, Vol. 253, 1993, pp. 245-265. https://doi.org/10.1017/S0022112093001788