DOI QR코드

DOI QR Code

Biosensors and their Applications in Food Safety: A Review

  • Yasmin, Jannat (Department of Biosystems Machinery Engineering, College of Agriculture and Life Science, Chungnam National University) ;
  • Ahmed, Mohammed Raju (Department of Biosystems Machinery Engineering, College of Agriculture and Life Science, Chungnam National University) ;
  • Cho, Byoung-Kwan (Department of Biosystems Machinery Engineering, College of Agriculture and Life Science, Chungnam National University)
  • Received : 2016.05.26
  • Accepted : 2016.07.11
  • Published : 2016.09.01

Abstract

Background: Foodborne pathogens are a growing concern with respect to human illnesses and death. There is an increasing demand for improvements in global food safety. However, it is a challenge to detect and identify these harmful organisms in a rapid, responsive, suitable, and effective way. Results: Rapid developments in biosensor designs have contributed to the detection of foodborne pathogens and other microorganisms. Biosensors can automate this process and have the potential to enable fast analyses that are cost and time-effective. Various biosensor techniques are available that can identify foodborne pathogens and other health hazards. Conclusions: In this review, biosensor technology is briefly discussed, followed by a summary of foodborne pathogen detection using various transduction systems that exhibit specificity for particular foodborne pathogens. In addition, the recent application of biosensor technology to detect pesticides and heavy metals is briefly addressed.

Keywords

References

  1. Afonso, A. S., B. Perez-Lopez, R. C. Faria, L. H. C. Mattoso, M. Hernandez-Herrero, A. X. Roig-Sagues, M. Maltez-da Costa and A. Merkoci. 2013. Electrochemical detection of Salmonella using gold nanoparticles. Biosensors and Bioelectronics 40(1):121-126. https://doi.org/10.1016/j.bios.2012.06.054
  2. Alavanja, M. C. R., M. Dosemeci, C. Samanic, J. Lubin, C. F. Lynch, C. Knott, J. Barker, J. A. Hoppin, D. P. Sandler, J. Coble, K. Thomas and A. Blair. 2004. Pesticides and lung cancer risk in the agricultural health study cohort. American Journal of Epidemiology 160(9):876-885. https://doi.org/10.1093/aje/kwh290
  3. Alocilja, E. C. and S. M. Radke. 2003. Market analysis of biosensors for food safety. Biosensors and Bioelectronics 18(5-6):841-846. https://doi.org/10.1016/S0956-5663(03)00009-5
  4. Amaro, F., A. P. Turkewitz, A. Martin-Gonzalez and J. C. Gutierrez. 2014. Functional GFP metallothionein fusion protein from Tetrahymena thermophila: a potential whole-cell biosensor for monitoring heavy metal pollution and a cell model to study metallothionein overproduction effects. Biometals 27(1):195-205. https://doi.org/10.1007/s10534-014-9704-0
  5. Amine, A., L. El Harrad, F. Arduini, D. Moscone and G. Palleschi. 2014. Analytical aspects of enzyme reversible inhibition. Talanta 118:368-374. https://doi.org/10.1016/j.talanta.2013.10.025
  6. Arduini, F. and A. Amine. 2014. Biosensors based on enzyme inhibition. In: Biosensors Based on Aptamers and Enzymes, eds. M. B. Gu and H. Kim, pp 299-326. Berlin, ISSN:0724-6145.
  7. Arugula, M. A. and A. Simonian. 2014. Novel trends in affinity biosensors: current challenges and perspectives. Measurement Science and Technology 25(3):032001-032022. https://doi.org/10.1088/0957-0233/25/3/032001
  8. Bagal-Kestwal, D., M. S. Karve, B. Kakade and V. K. Pillai. 2008. Invertase inhibition based electrochemical sensor for the detection of heavy metal ions in aqueous system: Application of ultra-microelectrode to enhance sucrose biosensor's sensitivity. Biosensors and Bioelectronics 24(4):657-664. https://doi.org/10.1016/j.bios.2008.06.027
  9. Bharadwaj, R., V. V. R. Sai, K. Thakare, A. Dhawangale, T. Kundu, S. Titus, P. K. Verma and S. Mukherji. 2011. Evanescent wave absorbance based fiber optic biosensor for label-free detection of E. coli at 280 nm wavelength. Biosensors and Bioelectronics 26(7):3367-3370. https://doi.org/10.1016/j.bios.2010.12.014
  10. BIO. 2016. Healing, Fueling, Feeding: How Biotechnology Is Enriching Your Life. Washington, D.C.: Biotechnology Innovation Organization. Available at: www.bio.org/articles/healing-fueling-feeding-how-biotechnologyenriching-your-life.
  11. Bokken, G. C. M. B., R. J. Corbee, F. Knapen and A. A. Bergwerff. 2003. Immunochemical detection of Salmonella group B, D and E using an optical surface plasmon resonance biosensor. FEMS Microbiology Letters 222(1):75-82. https://doi.org/10.1016/S0378-1097(03)00250-7
  12. Bruno J. G., T. Phillips, M. P. Carrillo and R. Crowell. 2009. Plastic-Adherent DNA Aptamer-Magnetic Bead and Quantum Dot Sandwich Assay for Campylobacter Detection. Journal of Fluorescence 19(3):427-435. https://doi.org/10.1007/s10895-008-0429-8
  13. Buyukgungor, H. and L. Gurel. 2009. The Role of Biotechnology on the Treatment of Wastes. African Journal of Biotechnology 8(25):7253-7262.
  14. Cabrera, L., J. Witte, B. Victor, L. Vermeiren, M. Zimic, J. Brandt and D. Geysen. 2009. Specific detection and identification of African trypanosomes in bovine peripheral blood by means of a PCR-ELISA assay. Veterinary Parasitology 164 (2-4):111-117. https://doi.org/10.1016/j.vetpar.2009.06.017
  15. CDC. 2014. Shiga Toxin-Producing E. coli & Food Safety. USA, IL: Centers for Disease Control and Prevention. Available at: www.cdc.gov/Features/EcoliInfection/index.html.
  16. CDC. 2016. 2015 Food Safety Report. USA, IL: Centers for Disease Control and Prevention. Available at: www.cdc.gov/foodnet/index.html.
  17. Chai, Y., S. Li, S. Horikawa, Mi-Kyung Park, V. Vodyanoy and A. Bryan. 2012. Rapid and Sensitive Detection of Salmonella Typhimurium on Eggshells by Using Wireless Biosensors. Journal of Food Protection 75(4):631-636. https://doi.org/10.4315/0362-028X.JFP-11-339
  18. Chan, K. Y., W. W. Ye, Y. Zhang, L. D. Xiao, P. H. M. Leung, Y. Li and M. Yang. 2013. Ultrasensitive detection of E. coli O157:H7 with biofunctional magnetic bead concentration via nanoporous membrane based electrochemical immunosensor. Biosensors and Bioelectronics 41:532-537. https://doi.org/10.1016/j.bios.2012.09.016
  19. Chauhan, N. and C. S. Pundir. 2011. An amperometric biosensor based on acetylcholinesterase immobilized onto iron oxide nanoparticles/multi-walled carbon nanotubes modified gold electrode for measurement of organophosphorus insecticides. Analytica Chimica Acta 701(1):66-74. https://doi.org/10.1016/j.aca.2011.06.014
  20. Chemburu, S., E. Wilkins and I. Abdel-Hamid. 2005. Detection of pathogenic bacteria in food samples using highlydispersed carbon particles. Biosensors and Bioelectronics 21(3):491-499. https://doi.org/10.1016/j.bios.2004.11.025
  21. Chowdhury, A. D., A. De, C. R. Chaudhuri, K. Bandyopadhyay and P. Sen. 2012. Label free polyaniline based impedimetric biosensor for detection of E. coli O157:H7 Bacteria. Sensors and Actuators B: Chemical 171-172:916-923. https://doi.org/10.1016/j.snb.2012.06.004
  22. Crim, S. M., P. M. Griffin, R. Tauxe, E. P. Marder, D. Gilliss, A. B. Cronquist, M. Cartter, M. Tobin-D'Angelo, D. Blythe, K. Smith, S. Lathrop, S. Zansky, P. R. Cieslak, J. Dunn, K. G. Holt, B. Wolpert and O. L. Henao. 2015. Prevention Preliminary incidence and trends of infection with pathogens transmitted commonly through food-Foodborne Diseases Active Surveillance Network, 10 U.S. sites, 2006-2014. Morbidity and Mortality Weekly Report 64(18):495-499.
  23. Criswell, J. T., J. Campbell and C. Luper. 2013. Toxicity of pesticides. Oklahoma Cooperative Extension Service, EPP-7457.
  24. Darnton, N., L.Turner, S. Rojevsky and H. Berg. 2007. On Torque and Tumbling in Swimming Escherichia coli. Journal of Bacteriology 189(5):1756-1764. https://doi.org/10.1128/JB.01501-06
  25. Daum, L. T., W. J. Barnes, J. C. Mcavin, M. S. Neidert, L. A. Cooper, W. B. Huff, L. Gaul, W. S. Riggins, S. Morris, A. Salmen and K. L. Lohman. 2002. Real-Time PCR Detection of Salmonella in Suspect Foods from a Gastroenteritis Outbreak in Kerr County, Texas. Journal of Clinical Microbiology 40(8):3050-3052. https://doi.org/10.1128/JCM.40.8.3050-3052.2002
  26. Davis, D., X. Guo, L. Musavi, C. S. Lin, S. H. Chen and C. H. W. Vivian. 2013. Gold Nanoparticle-Modified Carbon Electrode Biosensor for the Detection of Listeria monocytogenes. Industrial Biotechnology 9(1):31-36. https://doi.org/10.1089/ind.2012.0033
  27. Deng, L., Y. Xu and J. Huang. 2008. Developing a doubleantigen sandwich ELISA for effective detection of human hepatitis B core antibody. Comparative Immunology, Microbiology & Infectious Diseases 31(6):515-526. https://doi.org/10.1016/j.cimid.2007.09.001
  28. Deo, R. P., J. Wang, I. Block, A. Mulchandani, K. A. Joshi, M. Trojanowicz, F. Scholz, W. Chen and Y. Lin. 2005. Determination of organophosphate pesticides at a carbon nanotube/organophosphorus hydrolase electrochemical biosensor. Analytica Chimica Acta 530(2):185-189. https://doi.org/10.1016/j.aca.2004.09.072
  29. Du, D., A. Chen, Y. Xie, A. Zhang and Y. Lin. 2011. Nanoparticle-based immunosensor with apoferritin templated metallic phosphate label for quantification of phosphorylated acetylcholinesterase. Biosensors and Bioelectronics 26(9):3857-3863. https://doi.org/10.1016/j.bios.2011.02.047
  30. Du, D., J. Liu, X. Zhang, X. Cui and Y. Lin. 2011. One-step electrochemical deposition of a graphene-ZrO2 nanocomposite: Preparation, characterization and application for detection of organophosphorus agents. Journal of Materials Chemistry 21(22):8032-8037. https://doi.org/10.1039/c1jm10696a
  31. Du, D., J. Wang, J. N. Smith, C. Timchalk and Y. Lin. 2009. Biomonitoring of organophosphorus agent exposure by reactivation of cholinesterase enzyme based on carbon nanotube-enhanced flow-injection amperometric detection. Analytical Chemistry 81(22):9314-9320. https://doi.org/10.1021/ac901673a
  32. Du, D., J. Wang, L. Wang, D. Lu and Y. Lin. 2012. Integrated lateral flow test strip with electrochemical sensor for quantification of phosphorylated cholinesterase:biomarker of exposure to organophosphorus agents. Analytical Chemistry 84(3):1380-1385. https://doi.org/10.1021/ac202391w
  33. Du, D., W. Chen, W. Zhang, D. Liu, H. Li and Y. Lin. 2010. Covalent coupling of organophosphorus hydrolase loaded quantum dots to carbon nanotube/Au nanocomposite for enhanced detection of methyl parathion. Biosensors and Bioelectronics 25(6):1370-1375. https://doi.org/10.1016/j.bios.2009.10.032
  34. Dudak, F. C. and I. H. Boyaci. 2009. Rapid and label-free bacteria detection by surface plasmon resonance (SPR) biosensors. Biotechnology Journal 4(7):1003-1011. https://doi.org/10.1002/biot.200800316
  35. Eberth, Prof C. J. 1880. Die Organismen in den Organen bei Typhus abdominalis. Archiv fur pathologische Anatomie und Physiologie und fur klinische Medicin 81(1):58-74 (In German).
  36. FAO, 1996. Plan de Accion de la Cumbre Mundial sobre la Alimentacion, parrafo 1. In: Declaracion de Roma sobre la Seguridad Alimentaria Mundial y Plan de Accion de laCumbre Mundial sobre la Alimentacion. Cumbre Mundial sobre la Alimentacion, 43:13-17.
  37. Feng, P. and W. Burkhardt. 2002. Bacteriological Analytical Manual.8th ed. Silver Spring, USA: Elsevier Science.
  38. Gammoudi, I., H. Tarbague, A. Othmane. D. Moynet, D. Rebiere, R. Kalfat and C. Dejous. 2010. Love-wave bacteria-based sensor for the detection of heavy metal toxicity in liquid medium. Biosensor & Bioelectronics 26(4):1723-1726. https://doi.org/10.1016/j.bios.2010.07.118
  39. Gammoudi, I., V. Raimbault, H. Tarbague, F. Morote, C. Grauby-Heywang, A. Othmane, R. Kalfat, D. Moynet, D. Rebiere, C. Dejous and T. Cohen-Bouhacina. 2014. Enhanced bio-inspired microsensor based on microfluidic/bacterial/love wave hybrid structure for continuous control of heavy metals toxicity in liquid medium. Sensors and Actuators B: Chemical 198:278-284. https://doi.org/10.1016/j.snb.2014.01.104
  40. Garcia, M. Revenga-Parra, L. Anorga, S.Arana, F. Pariente and E. Lorenzo. 2012. Disposable DNA biosensor based on thin-film gold electrodes for selective Salmonella detection. Sensors and Actuators B: Chemical 161(1):1030-1037. https://doi.org/10.1016/j.snb.2011.12.002
  41. Ghica, M. E., R. C. Carvalho, A. Amine and C. M. A. Brett. 2013. Glucose oxidase enzyme inhibition sensors for heavy metals at carbon film electrodes modified with cobalt and copper hexacyanoferrate. Sensors and Actuators. B: Chemical 178:270-278. https://doi.org/10.1016/j.snb.2012.12.113
  42. Givaudan, N., F. Binet, B. L. Bot and C. Wiegand. 2014. Earthworm tolerance to residual agricultural pesticide contamination: field and experimental assessment of detoxification capabilities. Environmental Pollution 192:9-18. https://doi.org/10.1016/j.envpol.2014.05.001
  43. Han, A., M. Dufva, E. Belleville and C. B. V. Christensen. 2003. Detection of analyte binding to microarrays using gold nanoparticle labels and a desktop scanner. Lab on a Chip-Miniaturisation for Chemistry and Biology 3(4):329-332. https://doi.org/10.1039/b310814g
  44. Hara-Kudo, Y., H. Konuma, Y. Kamata, M. Miyahara, K. Takatori, Y. Onoue, Y. Sugita-Konishi and T. Ohnishi. 2012. Prevalence of the main food-borne pathogens in retail food under the national food surveillance system in Japan. Food Additives and Contaminants 30(8):1450-1458.
  45. Hardy A. 1999. A short history of food poisoning in Britain, circa 1850-1950. Social History of Medicine 12(2):293-311. https://doi.org/10.1093/shm/12.2.293
  46. He, H. Z., K. H. Leung, H. Yang, D. S. H. Chan, C. H. Leung, J. Z., A. B., J. L. Mergny and D. L. Ma. 2013. Label-free detection of sub-nanomolar lead (II) ions in aqueous solution using a metal-based luminescent switch-on probe. Biosensors and Bioelectronics 41:871-874. https://doi.org/10.1016/j.bios.2012.08.060
  47. Hendriksen, R. S., A. R. Vieira, S. Karlsmose, D. M. A. L. F. Wong, A. B. Jensen, H. C. Wegener and F. M. Aarestrup. 2011. Global Monitoring of Salmonella Serovar Distribution from the World Health Organization Global Foodborne Infections Network Country Data Bank: Results of Quality Assured Laboratories from 2001 to 2007. Foodborne Pathogens and Disease 8(8):887-900. https://doi.org/10.1089/fpd.2010.0787
  48. Hoffmann, S., B. Maculloch and M. Batz. 2015. Economic Burden of Major Foodborne Illnesses Acquired in the United States. USDA-140. Washimhton, D.C.:GPO.
  49. Iqbal, S. S., M. W. Mayo, J. G. Bruno, B. W. Bronk, C. A. Batt and J. P. Chambers. 2000. A review of molecular recognition technologies for detection of biological threat agents. Biosensors & Bioelectronics 15(11-12):549-578. https://doi.org/10.1016/S0956-5663(00)00108-1
  50. Ivnitski, D., I. Abdel-Hamid, P. Atanasov and E. Wilkins. 1999. Biosensors for detection of pathogenic bacteria. Biosensors & Bioelectronics 14(7):599-624. https://doi.org/10.1016/S0956-5663(99)00039-1
  51. Jeong, E. S., K. S. Lee, S. H. Heo, J. H. Seo and Y. K. Choi. 2011. Triplex PCR for the Simultaneous Detection of Pseudomonas aeruginosa, Helicobacter hepaticus, and Salmonella typhimurium. Experimental Animals 60(1):65-70. https://doi.org/10.1538/expanim.60.65
  52. Kim, M., J. W. Lim, H. J. Kim, S. K. Lee, S. J. Lee and T. Kim. 2015. Chemostat-like microfluidic platform for highly sensitive detection of heavy metal ions using microbial biosensors. Biosensors and Bioelectronics 65:257-264. https://doi.org/10.1016/j.bios.2014.10.028
  53. Kisukuri, C. M. and L. H. Andrade. 2015. Production of chiral compounds using immobilized cells as a source of biocatalysts. Organic & Biomolecular Chemistry 40(13):10086-10107.
  54. Korsak, D., E. Mackiw, E. Rozynek and M. Zylowska. 2015. Prevalence of Campylobacter spp. in retail chicken, turkey, pork, and beef meat in Poland between 2009 and 2013. Journal of Food Protection 78(5):1024-1028. https://doi.org/10.4315/0362-028X.JFP-14-353
  55. Kovacs, G. 1998. Micromachined Transducers: Sourcebook. WCB/McGraw Hill, Inc.
  56. Krejcova, L., P. Michalek, M. M. Rodrigo, Z. Heger, S. Krizkova, M. Vaculovicova, D. Hynek, V. Adam and R. Kizek. 2015. Nanoscale virus biosensors: state of the art. Nanobiosensors in Disease Diagnosis 4: 47-66.
  57. Lee, J. H., J. Y. Park, K. Min, H. J. Cha, S. S. Choi and Y. J. Yoo. 2010. A novel organophosphorus hydrolase-based biosensor using mesoporous carbons and carbon black for the detection of organophosphate nerve agents. Biosensors and Bioelectronics 25(7):1566-1570. https://doi.org/10.1016/j.bios.2009.10.013
  58. Leonard, P., S. Hearty, J. Brennan, L. Dunne, J. Quinn, T. Chakraborty and R. O'Kennedy. 2003. Advances in biosensors for detection of pathogens in food and water. Enzyme Microbial Technology 32(1):3-13. https://doi.org/10.1016/S0141-0229(02)00232-6
  59. Li, K., Y. Lai, W. Zhang and L. Jin. 2011. Fe2O3@Au core/shell nanoparticle-based electrochemical DNA biosensor for Escherichia coli detection. Talanta 84(3):607-613. https://doi.org/10.1016/j.talanta.2010.12.042
  60. Li, M., X. Zhou, W. Ding, S. Guo and N. Wu. 2013. Fluorescent aptamer-functionalized graphene oxide biosensor for label-free detection of mercury (II). Biosensors and Bioelectronics 41:889-893. https://doi.org/10.1016/j.bios.2012.09.060
  61. Li, Y., R. Afrasiabi, F. Fathi, N. Wang, C. Xiang, R. Love, Z. She and H. B. Kraatz. 2014. Impedance based detection of pathogenic E. coli O157:H7 using a ferrocene antimicrobial peptide modified biosensor. Biosensors and Bioelectronics 58:193-199. https://doi.org/10.1016/j.bios.2014.02.045
  62. Lijian, X., D. Jingjing, D. Yan and H. Nongyue. 2012. Electrochemical Detection of E. coli O157:H7 Using Porous Pseudo-Carbon Paste Electrode Modified with Carboxylic Multi-Walled Carbon Nanotubes, Glutaraldehyde and 3-Aminopropyltriethoxysilane. Journal of Biomedical Nanotechnology 8(6):1006-1011. https://doi.org/10.1166/jbn.2012.1456
  63. Lin, H., Q. Lu, S. Ge, Q. Cai and C. Grimes. 2010. Detection of pathogen Escherichia coli O157:H7 with a wireless magnetoelastic-sensing device amplified by using chitosan-modified magnetic Fe3O4 nanoparticles. Sensors and Actuators B: Chemical 147(1):343-349. https://doi.org/10.1016/j.snb.2010.03.011
  64. Lin, Y., F. Lu and J. Wang. 2004. Disposable carbon nanotube modified screen-printed biosensor for amperometric detection of organophosphorus pesticides and nerve agents. Electroanalysis 16(1-2):145-149. https://doi.org/10.1002/elan.200302933
  65. Liu, F. and C. Zhang. 2015. A novel paper-based microfluidic enhanced chemiluminescence biosensor for facile, reliable and highly-sensitive gene detection of Listeria monocytogenes. Sensors and Actuators B: Chemical 209:399-406. https://doi.org/10.1016/j.snb.2014.11.099
  66. Liu, G. and Y. Lin. 2006. Biosensor based on self-assembling acetylcholinesterase on carbon nanotubes for flow injection/amperometric detection of organophosphate pesticides and nerve agents. Analytical Chemistry 78(3):835-843. https://doi.org/10.1021/ac051559q
  67. Liu, G., J. Wang, R. Barry, C. Petersen, C. Timchalk, P. Gassman and Y. Lin. 2008. Nanoparticle-based electrochemical immunosensor for the detection of phosphorylated acetylcholinesterase: an exposure biomarker of organophosphate pesticides and nerve agents. Chemistry-A European Journal 14(32):9951-9959. https://doi.org/10.1002/chem.200800412
  68. Liu, G. and Y. Lin. 2005. Electrochemical sensor for organophosphate pesticides and nerve agents using zirconia nanoparticles as selective sorbents. Analytical Chemistry 77(18):5894-5901 https://doi.org/10.1021/ac050791t
  69. Long, F., A. Zhu, H. Shi, H. Wang and J. Liu. 2013. Rapid on-site/in-situ detection of heavy metal ions in environmental water using a structure-switching DNA optical biosensor. Scientific Reports 3, Article number:2308.
  70. Lu, D., J. Wang, D. Du, C. Timchalk, R. Barry and Y. Lin. 2011. A novel nanoparticle-based disposable electrochemical immunosensor for diagnosis of exposure to toxic organophosphorus agents. Advanced Functional Materials 21(22):4371-4378. https://doi.org/10.1002/adfm.201100616
  71. Lu, Y., W. Yang, L. Shi, L. Li, M. J. Alam, S. Guo and S. Miyoshi. 2009. Specific Detection of Viable Salmonella Cells by an Ethidium Monoazide-Loop Mediated Isothermal Amplification (EMA-LAMP) Method. Journal of Health Science 55(5):820-824. https://doi.org/10.1248/jhs.55.820
  72. Ma, X., Y. Jiang, F. Jia, Y. Yu, J. Chen and Z. Wang. 2014. An aptamer-based electrochemical biosensor for the detection of Salmonella. Journal of Microbiological Methods 98:94-98. https://doi.org/10.1016/j.mimet.2014.01.003
  73. Manzano, M., F. Cecchini, M. Fontanot, L. Iacumin, G. Comi and P. Melpignano. 2015. OLED-based DNA biochip for Campylobacter spp. detection in poultry meat samples. Biosensors and Bioelectronics 66:271-276. https://doi.org/10.1016/j.bios.2014.11.042
  74. Matthews, G. A., 2014. Pesticide Application Methods. New York: John Wiley & Sons.
  75. Mazumdar, S. D., B. Barlen, P. Kampfer and M. Keusgen. 2010. Surface plasmon resonance (SPR) as a rapid tool for serotyping of Salmonella. Biosensors and Bioelectronics 25(5):967-971. https://doi.org/10.1016/j.bios.2009.04.002
  76. Mazumdar, S. D., M. Hartmann, P. Kampfer and M. Keusgen. 2007. Rapid method for detection of Salmonella in milk by surface plasmon resonance (SPR). Biosensors and Bioelectronics 22(9-10):2040-2046. https://doi.org/10.1016/j.bios.2006.09.004
  77. MedScape. 2015. Campylobacter Infections. Available at:emedicine.medscape.com/article/213720-overview#a6.
  78. Mehta, J., S. K. Bhardwaj, N. Bhardwaj, A. K. Paul, P. Kumar, K. H. Kim and A. Deep. 2016. Progress in the biosensing techniques for trace-level heavy metals. Biotechnology Advances 34(1):47-60. https://doi.org/10.1016/j.biotechadv.2015.12.001
  79. Meng, X., J. Wei, X. Ren, J. Ren and F. Tang. 2013. A simple and sensitive fluorescence biosensor for detection of organophosphorus pesticides using H2O2-sensitive quantum dots/bi-enzyme. Biosensors and Bioelectronics 47:402-407. https://doi.org/10.1016/j.bios.2013.03.053
  80. Nachamkin, I. and M. J. Blaser. 2000. Campylobacter. 2nd ed., American Society for Microbiology, Washington D. C., USA: Elsevier Science.
  81. Nayak, M., A. Kotian, S. Marathe and D. Chakravortty. 2009. Detection of microorganisms using biosensors-A smarter way towards detection techniques. Biosensors and Bioelectronics 25:661-667. https://doi.org/10.1016/j.bios.2009.08.037
  82. Noguera, P. S., G. A. Posthuma-Trumpie, M. V. Tuil, F. J. V. D. Wal, A. Boer, A. Moers and A. V. Amerongen. 2011. Carbon Nanoparticles as Detection Labels in Antibody Microarrays. Detection of Genes Encoding Virulence Factors in Shiga Toxin-Producing Escherichia coli. Analytical Chemistry 83(22):8531-8536. https://doi.org/10.1021/ac201823v
  83. Nowak, B., T. Muffling, S. Chaunchom and J. Hartung. 2007. Salmonella contamination in pigs at slaughter and on the farm: A field studyusing an antibody ELISA test and a PCR technique. International Journal of Food Microbiology 115(3):259-267. https://doi.org/10.1016/j.ijfoodmicro.2006.10.045
  84. Oh, B. K., W. Lee, Y. K. Kim, W. H. Lee and J. W. Choi. 2004. Surface plasmon resonance immunosensor using self-assembled protein G for the detection of Salmonella paratyphi. Journal of Biotechnology 111(1):1-8. https://doi.org/10.1016/j.jbiotec.2004.02.010
  85. K'Owino, I. and O. A. Sadik. 2005. Impedance spectroscopy:A powerful tool for rapid biomolecular screening and cell culture monitoring. Electroanalysis 17:2101-2113. https://doi.org/10.1002/elan.200503371
  86. Park, M. K., J. W. Park, H. C. Wikle III and B. A. Chin. 2013. Evaluation of phage-based magnetoelastic biosensors for direct detection of Salmonella Typhimurium on spinach leaves. Sensors and Actuators B: Chemical. 176:1134-1140. https://doi.org/10.1016/j.snb.2012.10.084
  87. PHAC. 2016. Public Health Notice Update -Outbreak of Listeria infections linked to packaged salad products produced at the Dole processing facility in Springfield, Ohio, IL: Public Health Agency of Canada. Available at:www.phac-aspc.gc.ca/phn-asp/2016/listeria-eng.php.
  88. Plata, G. V. D. 2003. La Contaminacion de los Alimentos, un Problema por Resolver. Salud UIS 35(1):48-57 (In Spanish, with English abstract).
  89. Radhakrishnan, R., M. Jahne, S. Rogers and I. Ian. 2013. Suni. Detection of Listeria Monocytogenes by Electrochemical Impedance Spectroscopy. Electroanalysis 25(9):2231-2237. https://doi.org/10.1002/elan.201300140
  90. Rahn, K., S. A. De Grandis, R. C. Clarke, S. A. McEwen, J. E. Galan, C. Ginocchio, R. Curtiss and C. L. Gyles. 1992. Amplification of an invA gene sequence of Salmonella typhimurium by polymerase chain reaction as a specific method of detection of Salmonella. Molecular and Cellular Probes 6(4):271-279. https://doi.org/10.1016/0890-8508(92)90002-F
  91. Riley, L.W., R. S. Remis, S. D. Helgerson, H. B. McGee, J. G. Wells, B. R. Davis, M. S., Richard J. Hebert, M. D., E. S. Olcott, R. N., L. M. Johnson, R. N., M. S., N. T. Hargrett, P. A. Blake, M. D., M. P. H., and M. D. C. L. Mitchell. 1983. Hemorrhagic colitis associated with a rare Escherichia coli serotype. The New England Journal of Medicine 308:681-685. https://doi.org/10.1056/NEJM198303243081203
  92. Romanov, V., I. Galelyuka, V. Glushkov, N. Starodub and R. Son'ko. 2011. P7 -Optical Immune Biosensor Based on SPR for the Detection of Salmonella Typhimurium. In: Proceedings OPTO 2011, pp.139-144, Nurnberg, AMA Conferences.
  93. Sbartai, A., P. Namour, A. Errachid, J. Krejci, R. Sejnohova, L. Renaud, M.L. Hamlaoui, A.-S. Loir, F. Garrelie, C. Donnet, H. Soder, E. Audouard, J. Granier, and N. Jaffrezic-Renault. 2012. Electrochemical boron-doped diamond film microcells micromachined with femtosecond laser: application to the determination of water framework directive metals. Analytical Chemistry 84(11):4805-4811. https://doi.org/10.1021/ac3003598
  94. Setterington, E. B. and E. C. Alocilja. 2011. Rapid electrochemical detection of polyaniline-labeled Escherichia coli O157:H7. Biosensors and Bioelectronics 26(5):2208-2214. https://doi.org/10.1016/j.bios.2010.09.036
  95. Singh, A., H. N. Verma and K. Arora. 2015. Surface Plasmon Resonance Based Label-Free Detection of Salmonella using DNA Self Assembly. Applied Biochemistry and Biotechnology 175(3):1330-1343. https://doi.org/10.1007/s12010-014-1319-y
  96. Singh, A., S. Poshtiban, and S. Evoy. 2013. Recent advances in bacteriophage based biosensors for food-borne pathogen detection. Sensors 13(2):1763-1786. https://doi.org/10.3390/s130201763
  97. Sun, W., X. Qi, Y. Zhang, H. Yang, H. Gao, Y. Chen and Z. Sun. 2012. Electrochemical DNA biosensor for the detection of Listeria monocytogenes with dendritic nanogold and electrochemical reduced graphene modified carbon ionic liquid electrode. Electrochemica Acta 85:145-151. https://doi.org/10.1016/j.electacta.2012.07.133
  98. Tao, H. C., Z. W. Peng, P.S. Li, T. A. Yu and J. Su. 2013. Optimizing cadmium and mercury specificity of CadRbased E-coli biosensors by redesign of CadR. Biotechnology Letters 35 (8):1253-1258. https://doi.org/10.1007/s10529-013-1216-4
  99. Tolba, M., M. U. Ahmed, C. Tlili, F. Eichenseher, M. J. Loessner and M. Zourob. 2012. A bacteriophage endolysin-based electrochemical impedance biosensor for the rapid detection of Listeria cells. Analyst 137(24):5749-5756. https://doi.org/10.1039/c2an35988j
  100. Torso, L. M., R. E. Voorhees, S. A. Forest, A. Z. Gordon, S. A. Silvestri, B. Kissler, J. Schlackman, C.H. Sandt, P. Toma, J. Bachert, K. J. Mertz and L. H. Harrison. 2015. Escherichia coli O157:H7 outbreak associated with restaurant beef grinding. Journal of Food Protection 78(7):1272-1279. https://doi.org/10.4315/0362-028X.JFP-14-545
  101. Vaisocherova-Lisalova, H., I. Visova, M. L. Ermini, T. Springer, X. C. Song, J. Mrazek, J. Lamacova, N. S. Lynn, P. Sedivak and J. Homol. 2016. Low-fouling surface plasmon resonance biosensor for multi-step detection of foodborne bacterial pathogens in complex food samples. Biosensors and Bioelectronics 80: 84-90. https://doi.org/10.1016/j.bios.2016.01.040
  102. Varshney, M., L. Yang, X. L. Su and Y. Li. 2005. Magnetic nanoparticle-antibody conjugates for the separation of Escherichia coli 0157:H7 in ground beef. Journal of Food Protection 68:1804-1811. https://doi.org/10.4315/0362-028X-68.9.1804
  103. Velusamy, V., K. Arshak, O. Korostynska, K. Oliwa and C. Adley. 2010. An overview of foodborne pathogen detection: In the prespective of biosensors. Biotechnology advances 28(2):232-254. https://doi.org/10.1016/j.biotechadv.2009.12.004
  104. Wang, H., J. Wang, C. Timchalk and Y. Lin. 2008. Magnetic electrochemical immunoassays with quantum dot labels for detection of phosphorylated acetylcholinesterase in plasma. Analytical Chemistry 80(22):8477-8484. https://doi.org/10.1021/ac801211s
  105. Wang, J., C. Timchalk and Y. Lin. 2008. Carbon nanotubebased electrochemical sensor for assay of salivary cholinesterase enzyme activity: an exposure biomarker of organophosphate pesticides and nerve agents. Environmental Science & Technology 42(7):2688-2693. https://doi.org/10.1021/es702335y
  106. Wang, X., M. Liu, X. Wang, Z. Wu, L. Yang, S. Xia, L. Chen and J. Zhao. 2013. p-Benzoquinone-mediated amperometric biosensor developed with Psychrobacter sp. for toxicity testing of heavy metals. Biosensors and Bioelectronics 41:557-562. https://doi.org/10.1016/j.bios.2012.09.020
  107. Wang, Y., S. Zhang, D. Du, Y. Shao, Z. Li, J. Wang, M.H. Engelhard, J. Li and Y. Lin. 2011. Self assembly of acetylcholinesterase on a gold nanoparticles-graphene nanosheet hybrid for organophosphate pesticide detection using polyelectrolyte as a linker. Journal of Materials Chemistry 21(14):5319-5325. https://doi.org/10.1039/c0jm03441j
  108. Wang, Z.P., H. Xu, J. Wu, J. Ye and Z. Yang. 2011. Sensitive detection of Salmonella with fluorescent bioconjugated nanoparticles probe. Food Chemistry 125(2):779-784. https://doi.org/10.1016/j.foodchem.2010.09.020
  109. Wei, D., O. Oyarzabal, T. Huang, S. Balasubramanian, S. Sista and A. Simonian. 2007. Development of a surface plasmon resonance biosensor for the identification of Campylobacter jejuni. Journal of Microbiological Methods 69(1):78-85. https://doi.org/10.1016/j.mimet.2006.12.002
  110. Wells, J. G., B. R. Davis, I. K. Wachsmuth, L. W. Riley, R. S. Remis, R. Sokolow and G. K. Morris. 1983. Laboratory investigation of hemorrhagic colitis outbreaks associated with a rare Escherichia coli serotype. Journal of Clinical Microbiology 18(3):512-520.
  111. White, D. G., S. Zhao, S. Simjee, D. D. Wagner and P. F. McDermott. 2002. Antimicrobial resistance of foodborne pathogens. Microbes and Infection 4(4):405-412. https://doi.org/10.1016/S1286-4579(02)01554-X
  112. WHO. 2015. World Health Day 2015: Food safety. India:WHO. Available at: www.who.int/campaigns/worldhealth-day/2015/event/en/.
  113. Wladir, B. V., G. D. Edward, S. Doores and C. N. Cutter. 2015. Commercially Available Rapid Methods for Detection of Selected Foodborne Pathogens. Food, Science and Nutrition 56(9):1519-1531.
  114. Wong, L. S. and C. S. Wong. 2015. A New Method for Heavy Metals and Aluminium Detection Using Biopolymer-Based Optical Biosensor. Ieee Sensors Journal 15(1):471-475. https://doi.org/10.1109/JSEN.2014.2345583
  115. Yada, R.Y. 2015. Improving and Tailoring Enzymes for Food Quality and Functionality. Ist ed. Burlington:Elsevier Science.
  116. Yan, H., N. Tang, G. A. Jairo, S. Chakravarty, D. A. Blake and R. T. Chen. 2016. High-sensitivity high-throughput chip based biosensor array for multiplexed detection of heavy metals. Proc. In: Frontiers in Biological Detection: From Nanosensors to Systems VIII, pp. 972501-972508, United States, Proceedings of SPIE.
  117. Yang, H., H. Li and X. Jiang. 2008. Detection of foodborne pathogens using bioconjugated nanomaterials. Microfluidics and Nanofluidics 5(5):571-583. https://doi.org/10.1007/s10404-008-0302-8
  118. Yang, Y., H. Tu, A. Zhang, D. Du and Y. Lin. 2012. Preparation and characterization of Au-ZrO2-SiO2 nanocomposite spheres and their application in enrichment and detection of organophosphorus agents. Journal of Materials Chemistry 22(11):4977-4981. https://doi.org/10.1039/c2jm15129d
  119. Yeni, F., S. Acar, O.G. Polat, Y. Soyer and H. Alpas. 2014. Rapid and standardized methods for detection of foodborne pathogens and mycotoxins on fresh produce. Food Control 40:359-367. https://doi.org/10.1016/j.foodcont.2013.12.020
  120. Zelada-Guillen, G. A., S.V. Bhosale, J. Riu and F. X. Rius. 2010. Real-Time Potentiometric Detection of Bacteria in Complex Samples. Analytical Chemistry, 82(22):9254-9260. https://doi.org/10.1021/ac101739b
  121. Zhang, D., Y. Yan, Q. Li, T. Yu, W. Cheng, L. Wang, H. Ju and S. Ding. 2012. Label-free and high-sensitive detection of Salmonella using a surface plasmon resonance DNA-based biosensor. Journal of Biotechnology 160(3-4):123-128. https://doi.org/10.1016/j.jbiotec.2012.03.024
  122. Zhang, H., Y. Shi, F. Lan, Y. Pan, Y. Lin, J. Lv, Z. Zhu, Q. Jiang and C. Gqing. 2014. Detection of single-digit foodborne pathogens with the naked eye using carbon nanotubebased multiple cycle signal amplification. Chemical Communications 50(15):1848-1850. https://doi.org/10.1039/c3cc48417c
  123. Zhang, L., A. Zhang, D. Du and Y. Lin. 2012. Biosensor based on Prussian blue nanocubes/reduced graphene oxide nanocomposite for detection of organophosphorus pesticides. Nanoscale 4(15):4674-4679. https://doi.org/10.1039/c2nr30976a
  124. Zhang, W., A. M. Asiri, D. Liu, D. Du and Y. Lin. 2014. Nanomaterial-based biosensors for environmental and biological monitoring of organophosphorus pesticides and nerve agents. TrAC Trends in Analytical Chemistry 54:1-10. https://doi.org/10.1016/j.trac.2013.10.007
  125. Zhang, W., Y. Tang, D. Du, J. N. Smith, C. Timchalk, D. Liu and Y. Lin. 2013. Direct analysis of trichloropyridinol in human saliva using an Au nanoparticles-based immunochromatographic test strip for biomonitoring of exposure to chlorpyrifos. Talanta 114:261-267. https://doi.org/10.1016/j.talanta.2013.06.012
  126. Zhang, X., H. Wang, C. Yang, D. Du and Y. Lin. 2013. Preparation, characterization of Fe3O4 at TiO2 magnetic nanoparticles and their application for immunoassay of biomarker of exposure to organophosphorus pesticides. Biosensors and Bioelectronics 41(1):669-674. https://doi.org/10.1016/j.bios.2012.09.047
  127. Zhao, X., C. Lin, J. Wang and D. H. Oh. 2014. Advances in Rapid Detection Methods for Foodborne Pathogens. Journal of Microbiology and Biotechnology 24(3):297-312. https://doi.org/10.4014/jmb.1310.10013
  128. Zhao, Y., W. Zhang, Y. Lin and D. Du. 2013. The vital function of Fe3O4@Au nanocomposites for hydrolase biosensor design and its application in detection of methyl parathion. Nanoscale 5(3):1121-1126. https://doi.org/10.1039/c2nr33107a
  129. Zhao, z. and H. Jiang. 2010. Enzyme-based Electrochemical Biosensors. In: Biosensors, eds. Pier Andrea Serra, pp.1-22. ISBN 978-953-7619-99-2. InTech, Available at: http://www.intechopen.com/books/biosensors/enzyme-based-electrochemical-biosensors.
  130. Zou, Z., D. Du, J. Wang, J. N. Smith, C. Timchalk, Y. Li and Y. Lin. 2010. Quantum dot-based immunochromatographic fluorescent biosensor for biomonitoring trichloropyridinol, a biomarker of exposure to chlorpyrifos. Analytical Chemistry 82(12):5125-5133. https://doi.org/10.1021/ac100260m

Cited by

  1. Nucleic Acid Biosensor Synthesis of an All-in-One Universal Blocking Linker Recombinase Polymerase Amplification with a Peptide Nucleic Acid-Based Lateral Flow Device for Ultrasensitive Detection of Food Pathogens vol.90, pp.1, 2018, https://doi.org/10.1021/acs.analchem.7b01912