DOI QR코드

DOI QR Code

Comparative Analyses of Tomato yellow leaf curl virus C4 Protein-Interacting Host Proteins in Healthy and Infected Tomato Tissues

  • Kim, Namgyu (Department of Microbiology, Pusan National University) ;
  • Kim, Jinnyun (Department of Microbiology, Pusan National University) ;
  • Bang, Bongjun (Department of Microbiology, Pusan National University) ;
  • Kim, Inyoung (Department of Microbiology, Pusan National University) ;
  • Lee, Hyun-Hee (Department of Microbiology, Pusan National University) ;
  • Park, Jungwook (Department of Microbiology, Pusan National University) ;
  • Seo, Young-Su (Department of Microbiology, Pusan National University)
  • Received : 2016.08.10
  • Accepted : 2016.08.13
  • Published : 2016.10.01

Abstract

Tomato yellow leaf curl virus (TYLCV), a member of the genus Begomovirus, is one of the most important viruses of cultivated tomatoes worldwide, mainly causing yellowing and curling of leaves with stunting in plants. TYLCV causes severe problems in sub-tropical and tropical countries, as well as in Korea. However, the mechanism of TYLCV infection remains unclear, although the function of each viral component has been identified. TYLCV C4 codes for a small protein involved in various cellular functions, including symptom determination, gene silencing, viral movement, and induction of the plant defense response. In this study, through yeast-two hybrid screenings, we identified TYLCV C4-interacting host proteins from both healthy and symptom-exhibiting tomato tissues, to determine the role of TYLCV C4 proteins in the infection processes. Comparative analyses of 28 proteins from healthy tissues and 36 from infected tissues showing interactions with TYLCV C4 indicated that TYLCV C4 mainly interacts with host proteins involved in translation, ubiquitination, and plant defense, and most interacting proteins differed between the two tissues but belong to similar molecular functional categories. Four proteins-two ribosomal proteins, S-adenosyl-L-homocysteine hydrolase, and 14-3-3 family protein-were detected in both tissues. Furthermore, the identified proteins in symptom-exhibiting tissues showed greater involvement in plant defenses. Some are key regulators, such as receptor-like kinases and pathogenesis-related proteins, of plant defenses. Thus, TYLCV C4 may contribute to the suppression of host defense during TYLCV infection and be involved in ubiquitination for viral infection.

Keywords

References

  1. Bang, B., Lee, J., Kim, S., Park, J., Nguyen, T. T. and Seo, Y. S. 2014. A rapid and efficient method for construction of an infectious clone of Tomato yellow leaf curl virus. Plant Pathol. J. 30:310-315. https://doi.org/10.5423/PPJ.NT.03.2014.0025
  2. Bang, B., Park, J., Jeon, J. S. and Seo, Y. S. 2013. Establishment and application of the yeast two-hybrid (Y2H)-based plant interactome for investigation of gene functions. J. Plant Biol. 56:367-374. https://doi.org/10.1007/s12374-013-0389-7
  3. Bisaro, D. M. 2006. Silencing suppression by geminivirus proteins. Virology 344:158-168. https://doi.org/10.1016/j.virol.2005.09.041
  4. Both, G. W., Banerjee, A. K. and Shatkin, A. J. 1975. Methylation-dependent translation of viral messenger RNAs in vitro. Proc. Natl. Acad. Sci. U. S. A. 72:1189-1193. https://doi.org/10.1073/pnas.72.3.1189
  5. Bruckner, A., Polge, C., Lentze, N., Auerbach, D. and Schlattner, U. 2009. Yeast two-hybrid, a powerful tool for systems biology. Int. J. Mol. Sci. 10:2763-2788. https://doi.org/10.3390/ijms10062763
  6. Canizares, M. C., Lozano-Duran, R., Canto, T., Bejarano, E. R., Bisaro, D. M., Navas-Castillo, J. and Moriones, E. 2013. Effects of the crinivirus coat protein-interacting plant protein SAHH on post-transcriptional RNA silencing and its suppression. Mol. Plant-Microbe Interact. 26:1004-1015. https://doi.org/10.1094/MPMI-02-13-0037-R
  7. Choi, J., Choi, D., Lee, S., Ryu, C. M. and Hwang, I. 2011. Cytokinins and plant immunity: old foes or new friends? Trends Plant Sci. 16:388-394. https://doi.org/10.1016/j.tplants.2011.03.003
  8. Cusick, M. E., Klitgord, N., Vidal, M. and Hill, D. E. 2005. Interactome: gateway into systems biology. Hum. Mol. Genet. 14:R171-R181. https://doi.org/10.1093/hmg/ddi335
  9. Czosnek, H. and Laterrot, H. 1997. A worldwide survey of Tomato yellow leaf curl viruses. Arch. Virol. 142:1391-1406. https://doi.org/10.1007/s007050050168
  10. Dry, I. B., Rigden, J. E., Krake, L. R., Mullineaux, P. M. and Rezaian, M. A. 1993. Nucleotide sequence and genome organization of Tomato leaf curl geminivirus. J. Gen. Virol. 74:147-151. https://doi.org/10.1099/0022-1317-74-1-147
  11. Goring, D. R. and Walker, J. C. 2004. Self-rejection: a new kinase connection. Science 303:1474-1475. https://doi.org/10.1126/science.1095764
  12. Goyal, R. K., Fatima, T., Topuz, M., Bernadec, A., Sicher, R., Handa, A. K. and Mattoo, A. K. 2016. Pathogenesis-related protein 1b1 (PR1b1) is a major tomato fruit protein responsive to chilling temperature and upregulated in high polyamine transgenic genotypes. Front. Plant Sci. 7:901.
  13. Harrison, B. D., Muniyappa, V., Swanson, M. M., Roberts, I. M. and Robinson, D. J. 1991. Recognition and differentiation of seven whitefly-transmitted geminiviruses from India, and their relationships to African cassava mosaic and Thailand mung bean yellow mosaic viruses. Ann. Appl. Biol. 118:299-308. https://doi.org/10.1111/j.1744-7348.1991.tb05630.x
  14. Jupin, I., De Kouchkovsky, F., Jouanneau, F. and Gronenborn, B. 1994. Movement of Tomato yellow leaf curl geminivirus (TYLCV): involvement of the protein encoded by ORF C4. Virology 204:82-90. https://doi.org/10.1006/viro.1994.1512
  15. Kheyr-Pour, A., Bendahmane, M., Matzeit, V., Accotto, G. P., Crespi, S. and Gronenborn, B. 1991. Tomato yellow leaf curl virus from Sardinia is a whitefly-transmitted monopartite geminivirus. Nucleic Acids Res. 19:6763-6769. https://doi.org/10.1093/nar/19.24.6763
  16. Lee, H., Song, W., Kwak, H. R., Kim, J. D., Park, J., Auh, C. K., Kim, D. H., Lee, K. Y., Lee, S. and Choi, H. S. 2010. Phylogenetic analysis and inflow route of Tomato yellow leaf curl virus (TYLCV) and Bemisia tabaci in Korea. Mol. Cells 30:467-476. https://doi.org/10.1007/s10059-010-0143-7
  17. Li, X., Huang, L., Hong, Y., Zhang, Y., Liu, S., Li, D., Zhang, H. and Song, F. 2015. Co-silencing of tomato S-adenosylhomocysteine hydrolase genes confers increased immunity against Pseudomonas syringae pv. tomato DC3000 and enhanced tolerance to drought stress. Front. Plant Sci. 6:717.
  18. Lozano-Duran, R., Bourdais, G., He, S. Y. and Robatzek, S. 2014. The bacterial effector HopM1 suppresses PAMP-triggered oxidative burst and stomatal immunity. New Phytol. 202:259-269. https://doi.org/10.1111/nph.12651
  19. Lozano-Duran, R. and Robatzek, S. 2015. 14-3-3 proteins in plant-pathogen interactions. Mol. Plant-Microbe Interact. 28:511-518. https://doi.org/10.1094/MPMI-10-14-0322-CR
  20. Matic, S., Pegoraro, M. and Noris, E. 2016. The C2 protein of Tomato yellow leaf curl Sardinia virus acts as a pathogenicity determinant and a 16-amino acid domain is responsible for inducing a hypersensitive response in plants. Virus Res. 215:12-19. https://doi.org/10.1016/j.virusres.2016.01.014
  21. Moriones, E. and Navas-Castillo, J. 2000. Tomato yellow leaf curl virus, an emerging virus complex causing epidemics worldwide. Virus Res. 71:123-134. https://doi.org/10.1016/S0168-1702(00)00193-3
  22. Nomura, K., Debroy, S., Lee, Y. H., Pumplin, N., Jones, J. and He, S. Y. 2006. A bacterial virulence protein suppresses host innate immunity to cause plant disease. Science 313:220-223. https://doi.org/10.1126/science.1129523
  23. Oh, C. S., Pedley, K. F. and Martin, G. B. 2010. Tomato 14-3-3 protein 7 positively regulates immunity-associated programmed cell death by enhancing protein abundance and signaling ability of MAPKKK {alpha}. Plant Cell 22:260-272. https://doi.org/10.1105/tpc.109.070664
  24. Perefarres, F., Thierry, M., Becker, N., Lefeuvre, P., Reynaud, B., Delatte, H. and Lett, J. M. 2012. Biological invasions of geminiviruses: case study of TYLCV and Bemisia tabaci in Reunion Island. Viruses 4:3665-3688. https://doi.org/10.3390/v4123665
  25. Pereira, L. A., Todorova, M., Cai, X., Makaroff, C. A., Emery, R. J. and Moffatt, B. A. 2007. Methyl recycling activities are co-ordinately regulated during plant development. J. Exp. Bot. 58:1083-1098. https://doi.org/10.1093/jxb/erl275
  26. Rigden, J. E., Krake, L. R., Rezaian, M. A. and Dry, I. B. 1994. ORF C4 of Tomato leaf curl geminivirus is a determinant of symptom severity. Virology 204:847-850. https://doi.org/10.1006/viro.1994.1606
  27. Rochester, D. E., Kositratana, W. and Beachy, R. N. 1990. Systemic movement and symptom production following agroinoculation with a single DNA of Tomato yellow leaf curl geminivirus (Thailand). Virology 178:520-526. https://doi.org/10.1016/0042-6822(90)90349-V
  28. Seo, Y. S., Chern, M., Bartley, L. E., Han, M., Jung, K. H., Lee, I., Walia, H., Richter, T., Xu, X., Cao, P., Bai, W., Ramanan, R., Amonpant, F., Arul, L., Canlas, P. E., Ruan, R., Park, C. J., Chen, X., Hwang, S., Jeon, J. S. and Ronald, P. C. 2011. Towards establishment of a rice stress response interactome. PLoS Genet. 7:e1002020. https://doi.org/10.1371/journal.pgen.1002020
  29. Vanitharani, R., Chellappan, P. and Fauquet, C. M. 2005. Geminiviruses and RNA silencing. Trends Plant Sci. 10:144-151. https://doi.org/10.1016/j.tplants.2005.01.005
  30. van Wezel, R., Dong, X., Blake, P., Stanley, J. and Hong, Y. 2002. Differential roles of geminivirus Rep and AC4 (C4) in the induction of necrosis in Nicotiana benthamiana. Mol. Plant Pathol. 3:461-471. https://doi.org/10.1046/j.1364-3703.2002.00141.x
  31. Wirthmueller, L., Roth, C., Banfield, M. J. and Wiermer, M. 2013. Hop-on hop-off: importin-${\alpha}$-guided tours to the nucleus in innate immune signaling. Front. Plant Sci. 4:149.
  32. Yang, X., Xie, Y., Raja, P., Li, S., Wolf, J. N., Shen, Q., Bisaro, D. M. and Zhou, X. 2011. Suppression of methylation-mediated transcriptional gene silencing by ${\beta}$C1-SAHH protein interaction during geminivirus-betasatellite infection. PLoS Pathog. 7:e1002329. https://doi.org/10.1371/journal.ppat.1002329

Cited by

  1. The Involvement of Heat Shock Proteins in the Establishment of Tomato Yellow Leaf Curl Virus Infection vol.8, 2017, https://doi.org/10.3389/fpls.2017.00355
  2. Peanut Stunt Virus and Its Satellite RNA Trigger Changes in Phosphorylation in N. benthamiana Infected Plants at the Early Stage of the Infection vol.19, pp.10, 2018, https://doi.org/10.3390/ijms19103223