DOI QR코드

DOI QR Code

Occurrence of Toxigenic Fusarium vorosii among Small Grain Cereals in Korea

  • Lee, Theresa (Microbial Safety Division, National Institute of Agricultural Sciences, Rural Development Administration) ;
  • Paek, Ji-Seon (Microbial Safety Division, National Institute of Agricultural Sciences, Rural Development Administration) ;
  • Lee, Kyung Ah (Microbial Safety Division, National Institute of Agricultural Sciences, Rural Development Administration) ;
  • Lee, Soohyung (Microbial Safety Division, National Institute of Agricultural Sciences, Rural Development Administration) ;
  • Choi, Jung-Hye (Microbial Safety Division, National Institute of Agricultural Sciences, Rural Development Administration) ;
  • Ham, Hyeonheui (Microbial Safety Division, National Institute of Agricultural Sciences, Rural Development Administration) ;
  • Hong, Sung Kee (Microbial Safety Division, National Institute of Agricultural Sciences, Rural Development Administration) ;
  • Ryu, Jae-Gee (Microbial Safety Division, National Institute of Agricultural Sciences, Rural Development Administration)
  • Received : 2016.05.15
  • Accepted : 2016.06.07
  • Published : 2016.10.01

Abstract

Fusarium graminearum species complex (FGSC) causes Fusarium head blight in small grain cereals. To date, four species (F. graminearum, F. asiaticum, F. boothii, and F. meridionale ) belonging to FGSC frequently occur in Korean cereals. In addition, we first reported the occurrence of additional species (F. vorosii ) within FGSC, which was isolated from barley, corn, and rice in Korea. Phylogenetic analysis of the Fusarium isolates of this group using combined multigene sequences confirmed species identification. Moreover, the macroconidia produced by these isolates were morphologically similar to those of the F. vorosii holotype. Chemical analysis indicated that the F. vorosii isolates produced various trichothecenes such as nivalenol and deoxynivalenol with their acetyl derivatives along with zearalenone. Pathogenicity tests demonstrated that all of the F. vorosii isolates examined were pathogenic on barley, corn, and rice with variation in aggressiveness. This study is the first report of F. vorosii in Korean cereals, their pathogenicity towards barley and corn, and their ability to produce trichothecenes and zearalenone.

Keywords

References

  1. Aoki, T., Ward, T. J., Kistler, H. C. and O'Donnell, K. O. 2012. Systematics, phylogeny and trichothecene mycotoxin potential of Fusarium head blight cereal pathogens. Mycotoxins 62:91-102. https://doi.org/10.2520/myco.62.91
  2. Brown, D. W., Lee, S. H., Kim, L. H., Ryu, J. G., Lee, S., Seo, Y., Kim, Y. H., Busman, M., Yun, S. H., Proctor, R. H. and Lee, T. 2014. Identification of a 12-gene fusaric acid biosynthetic gene cluster in fusarium species through comparative and functional genomics. Mol. Plant-Microbe Interact. 28:319-332.
  3. Goswami, R. S. and Kistler, H. C. 2004. Heading for disaster: Fusarium graminearum on cereal crops. Mol. Plant Pathol. 5:515-525. https://doi.org/10.1111/j.1364-3703.2004.00252.x
  4. Han, Y. K., Kim, M. D., Lee, S. H., Yun, S. H. and Lee, Y. W. 2007. A novel F-box protein involved in sexual development and pathogenesis in Gibberella zeae. Mol. Microbiol. 63:768-779.
  5. Karugia, G. W., Suga, H., Gale, L. R., Nakajima, T., Tomimura, K. and Hyakumachi, M. 2009. Population structure of the Fusarium graminearum species complex from a single Japanese wheat field sampled in two consecutive years. Plant Dis. 93:170-174. https://doi.org/10.1094/PDIS-93-2-0170
  6. Kim, J. C., Park, A. R., Lee, Y. W., Youn, H. J. and Cha, S. H. 1993. Variation in trichothecene and zearalenone production by Fusarium graminearum isolates from corn and barley in Korea. Korean J. Microbiol. 31:312-317.
  7. Lee, J., Chang, I. Y., Kim, H., Yun, S. H., Leslie, J. F. and Lee, Y. W. 2009. Genetic diversity and fitness of Fusarium graminearum populations from rice in Korea. Appl. Environ. Microbiol. 75:3289-3295. https://doi.org/10.1128/AEM.02287-08
  8. Lee, S. H., Lee, J. K., Nam, Y. J., Lee, S. H., Ryu, J. G. and Lee, T. 2010. Population structure of Fusarium graminearum from maize and rice in 2009 in Korea. Plant Pathol. J. 26: 321-327. https://doi.org/10.5423/PPJ.2010.26.4.321
  9. Lee, T., Kim, S., Busman, M., Proctor, R. H., Ham, H., Lee, S., Hong, S. K. and Ryu, J. G. 2015. Rapid detection method for fusaric acid-producing species of Fusarium by PCR. Res. Plant Dis. 21:326-329. https://doi.org/10.5423/RPD.2015.21.4.326
  10. Lee, T., Oh, D. W., Kim, H. S., Lee, J., Kim, Y. H., Yun, S. H. and Lee, Y. W. 2001. Identification of deoxynivalenol- and nivalenol-producing chemotypes of Gibberella zeae by using PCR. Appl. Environ. Microbiol. 67:2966-2972. https://doi.org/10.1128/AEM.67.7.2966-2972.2001
  11. Leslie, J. F. and Summerell, B. A. 2006. The fusarium laboratory manual. Wiley-Blackwell, Ames, IA, USA. 388 pp.
  12. Miedaner, T., Cumagun, C. J. R. and Chakraborty, S. 2008. Population genetics of three important head blight pathogens Fusarium graminearum, F. pseudograminearum, and F. culmorum. J. Phytopathol. 156:129-139. https://doi.org/10.1111/j.1439-0434.2007.01394.x
  13. O'Donnell, K., Kistler, H. C., Tacke, B. K. and Casper, H. H. 2000. Gene genealogies reveal global phylogeographic structure and reproductive isolation among lineages of Fusarium graminearum, the fungus causing wheat scab. Proc. Natl. Acad. Sci. U. S. A. 97:7905-7910. https://doi.org/10.1073/pnas.130193297
  14. Parry, D. W., Jenkinson, P. and McLeod, L. 1995. Fusarium ear blight (scab) in small grain-cereals: a review. Plant Pathol. 44:207-238. https://doi.org/10.1111/j.1365-3059.1995.tb02773.x
  15. Qui, J., Xu, J. and Shi, J. 2014. Molecular characterization of the Fusarium graminearum species complex in Eastern China. Eur. J. Plant Pathol. 139:811-823. https://doi.org/10.1007/s10658-014-0435-4
  16. Sarver, B. A., Ward, T. J., Gale, L. R., Broz, K., Kistler, H. C., Aoki, T., Nicholson, P., Carter, J. and O'Donnell, K. 2011. Novel Fusarium head blight pathogens from Nepal and Louisiana revealed by multilocus genealogical concordance. Fungal Genet. Biol. 48:1096-1107. https://doi.org/10.1016/j.fgb.2011.09.002
  17. Starkey, D. E., Ward, T. J., Aoki, T., Gale, L. R., Kistler, H. C., Geiser, D. M., Suga, H., Toth, B., Varga, J. and O'Donnell, K. 2007. Global molecular surveillance reveals novel Fusarium head blight species and trichothecene toxin diversity. Fungal Genet. Biol. 44:1191-1204. https://doi.org/10.1016/j.fgb.2007.03.001
  18. Suga, H., Karugia, G. W., Ward, T., Gale, L. R., Tomimura, K., Nakajima, T., Miyasaka, A., Koizumi, S., Kageyama, K. and Hyakumachi, M. 2008. Molecular characterization of the Fusarium graminearum species complex in Japan. Phytopathology 98:159-166. https://doi.org/10.1094/PHYTO-98-2-0159
  19. Tamura, K., Peterson, D., Peterson, N., Stecher, G., Nei, M. and Kumar, S. 2011. MEGA5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Mol. Biol. Evol. 28:2731-2739. https://doi.org/10.1093/molbev/msr121
  20. Thompson, J. D., Higgins, D. G. and Gibson, T. J. 1994. CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res. 22:4673-4680. https://doi.org/10.1093/nar/22.22.4673
  21. van der Lee, T., Zhang, H., Diepeningen, A. and Waalwijk, C. 2015. Biogeography of Fusarium graminearum species complex and chemotypes: a review. Food Addit. Contam. Part A Chem. Anal. Control Expo. Risk Assess. 32:453-460. https://doi.org/10.1080/19440049.2014.984244
  22. Yli-Mattila, T. 2010. Ecology and evolution of toxigenic Fusarium species in cereals in northern Europe and Asia. J. Plant Pathol. 92:7-18.
  23. Yli-Mattila, T., Gagkaeva, T., Ward, T. J., Aoki, T., Kistler, H. C. and O'Donnell, K. 2009. A novel Asian clade within the Fusarium graminearum species complex includes a newly discovered cereal head blight pathogen from the Russian Far East. Mycologia 101:841-852. https://doi.org/10.3852/08-217
  24. Zhang, H., Zhang, Z., van der Lee, T., Chen, W. Q., Xu, J., Xu, J. S., Yang, L., Yu, D., Waalwijk, C. and Feng, J. 2010. Population genetic analyses of Fusarium asiaticum populations from barley suggest a recent shift favoring 3ADON producers in southern China. Phytopathology 100:328-336. https://doi.org/10.1094/PHYTO-100-4-0328

Cited by

  1. Species: Identity and Mycotoxicology” revisited pp.1557-2536, 2018, https://doi.org/10.1080/00275514.2018.1519773