DOI QR코드

DOI QR Code

Simplified Analytical Model for Investigating the Output Power of Solar Array on Stratospheric Airship

  • Zhang, Yuanyuan (College of Geoscience and Surveying Engineering, China University of Mining and Technology) ;
  • Li, Jun (School of Aeronautic Science and Engineering, Beihang University) ;
  • Lv, Mingyun (School of Aeronautic Science and Engineering, Beihang University) ;
  • Tan, Dongjie (School of Aeronautic Science and Engineering, Beihang University) ;
  • Zhu, Weiyu (School of Aeronautic Science and Engineering, Beihang University) ;
  • Sun, Kangwen (School of Aeronautic Science and Engineering, Beihang University)
  • Received : 2016.03.22
  • Accepted : 2016.09.22
  • Published : 2016.09.30

Abstract

Solar energy is the ideal power choice for long-endurance stratospheric airships. The output performance of solar array on stratospheric airship is affected by several major factors: flying latitude, flight date, airship's attitude and the temperature of solar cell, but the research on the effect of these factors on output performance is rare. This paper establishes a new simplified analytical model with thermal effects to analyze the output performance of the solar array. This model consisting of the geometric model of stratospheric airship, solar radiation model and incident solar radiation model is developed using MATLAB computer program. Based on this model, the effects of the major factors on the output performance of the solar array are investigated expediently and easily. In the course of the research, the output power of solar array is calculated for five airship's latitudes of $0^{\circ}$, $15^{\circ}$, $30^{\circ}$, $45^{\circ}$ and $60^{\circ}$, four special dates and different attitudes of five pitch angles and four yaw angles. The effect of these factors on output performance is discussed in detail. The results are helpful for solving the energy problem of the long endurance airship and planning the airline.

Keywords

References

  1. Tang, Z.H., Liu, P.Q., Sun, J.W., Chen, Y.X., Guo, H. and Li, G.C., "Performance of Contra-Rotating Propellers for Stratospheric Airships"., International Journal of Aeronautical and Space Sciences, Vol. 16, No. 4, 2015, pp. 485-492. DOI: http://dx.doi.org/10.5139/IJASS.2015.16.4.485
  2. Tang, Z.H., Liu, P.Q., Guo, H., Yan, J. and Li, G.C., "Two-Dimensional Moving Blade Row Interactions in a Stratospheric Airship Contra-Rotating Open Propeller Configuration", International Journal of Aeronautical and Space Sciences, Vol. 16, No. 4, 2015, pp. 500-509. DOI: http://dx.doi.org/10.5139/IJASS.2015.16.4.500
  3. J. Li, M. Lv, Sun, K. and Zhang, Y. , "Stratospheric aerostat- A new high altitude scientific platform", Current Science, 2016.
  4. Jun Li, M.L., Kangwen Sun., "Research on optimum area of solar array for stratospheric solar-powered airship", Proceedings of the Institution of Mechanical Engineers, Part G: Journal of Aerospace Engineering, 2016.
  5. Choi, S.H., Elliott, J.R., King, G.C., Park, Y., Kim, J.W., Chu, S.H. and Song, K.D., "Power technology for applicationspecific scenarios of high altitude airships", 3rd International Energy Conversion Engineering Conference, 1, 2005, pp. 174-182. DOI: http://dx.doi.org/10.2514/6.2005-5529.
  6. Nachbar, D. and Fabel, J. "Next generation thermal airship", AIAA paper 6839, 2003. DOI: http://dx.doi.org/ 10.2514/6.2003-6839.
  7. Gao, X.-Z., Hou, Z.-X., Guo, Z., Liu, J.-X. and Chen, X.-Q., "Energy management strategy for solar-powered high-altitude long-endurance aircraft", Energy Conversion and Management, Vol. 70, No. 2013, pp. 20-30. DOI: http:// dx.doi.org/10.1016/j.enconman.2013.01.007.
  8. Choi, S.H., Elliott, J.R. and King, G.C., "Power budget analysis for high altitude airships", Proceedings of SPIE - The International Society for Optical Engineering, 2006. DOI: http://dx.doi.org/10.1117/12.663586.
  9. Naito, H., Eguchi, K., Hoshino, T., Okaya, S., Fujiwara, T., Miwa, S. and Nomura, Y., "Design and analysis of solar power system for SPF airship operations", 13th AIAA Lighter- Than Air Technology Conference, 1999. DOI: http://dx.doi.org/10.2514/6.1999-3913.
  10. Colozza, A., "PV / Regenerative Fuel Cell High Altitude Airship Feasibility Study", 2nd AIAA "Unmanned Unlimited" Conf. and Workshop & Exhibit, 2003. DOI: http://dx.doi.org/10.2514/6.2003-6663.
  11. Wang, H., Song, B. and Zuo, L., "Effect of High-Altitude Airship's Attitude on Performance of its Energy System", Journal of Aircraft, Vol. 44, No. 6, 2007, pp. 2077-2080. DOI: http://dx.doi.org/10.2514/1.31505.
  12. Su, J. and Song, B., "Curved surface renewable solar cell applied to near space airship energy system", ICEMS, 2008, pp. 2621-2626.
  13. Wei, Z., Qi, S., Yong, L., Zhihong, W. and Lingyun, H., "Computation and analysis of power generated by the solar cell array of a stratospheric airship", Journal of Astronautics, Vol. 31, No. 4, 2010, pp. 1224-1230. DOI: http://dx.doi.org/10.3873 j.issn.1000-1328.2010.04.046
  14. Garg, A.K., Burnwal, S.K., Pallapothu, A., Alawa, R.S. and Ghosh, A.K., "Solar Panel Area Estimation and Optimization for Geostationary Stratospheric Airships", 11th AIAA Aviation Technology, Integration,and Operations (ATIO) Conference, 2011. DOI: http://dx.doi.org/10.2514/6.2011-6974.
  15. Li, X., Fang, X. and Dai, Q., "Research on Thermal Characteristics of Photovoltaic Array of Stratospheric Airship", Journal of Aircraft, Vol. 48, No. 4, 2011, pp. 1380-1386. DOI: http://dx.doi.org/10.2514/1.C031295.
  16. Xu, G., Li, Z., Wang, S. and Jiang, L., "Study on high efficiency power supply with wide input voltage for stratospheric airships", IEEE Aerospace Conference Proceedings, 2014. doi: 10.1109/AERO.2014.6836517.
  17. Miller, G., Stoia, T., Harmala, D. and Atreya, S., "Operational Capability of High Altitude Solar Powered Airships", AIAA 5th Aviation, Technology, Integration, and Operations Conference, 2005. DOI: http://dx.doi.org/10.2514/6.2005-7487.
  18. Khoury, G.A., "Airship technology", Cambridge University Press, 2012.
  19. Farley, R.E., "BalloonAscent - 3-D Simulation Tool for the Ascent and Float of High-Altitude Balloons", AIAA 5th Aviation, Technology, Integration, and Operations Conference, 1-15, 2005. DOI: http://dx.doi.org/ 10.2514/6.2005-7412.
  20. Ran, H., Thomas, R. and Mavris, D., "A comprehensive global model of broadband direct solar radiation for solar cell simulation", 45th AIAA Aerospace Sciences Meeting 2007, Jan. 8 - Jan. 11, 1, 2007, PP.262-277. DOI: http://dx.doi.org/10.2514/6.2007-33.
  21. Shi, H., Song, B., Yao, Q. and Cao, X., "Thermal performance of stratospheric airships during ascent and descent", Journal of Thermophysics and Heat Transfer, Vol. 23, No. 4, 2009, pp. 816-821. DOI: http://dx.doi.org/10.2514/1.42634.
  22. Dai, Q., Fang, X., Li, X. and Tian, L., "Performance simulation of high altitude scientific balloons", Advances in Space Research, Vol. 49, No. 6, 2012, pp. 1045-1052. DOI: http://dx.doi.org/10.1016/j.asr.2011.12.026.
  23. Liu, D., Yang, Y., Lu, M. and Wu, Z., "Effect of envelop thermal radiative properties on the stratospheric superpressure LTA vehicle helium temperature", Journal of Beijing University of Aeronautics and Astronautics, Vol. 36, No. 7, 2010, pp. 836-840. DOI: http://dx.doi.org/10.13700/j.bh.1001-5965.2010.07.009
  24. Dolce, J.L. and Collozza, A., "High-Altitude, Long-Endurance Airships for Coastal Surveillance", NTIS/NASA, 2005.
  25. Library, W. "American society of heating, refrigerating and air-conditioning engineers", Atlanta, GA, 1997.
  26. Sun, K., Yang, Q., Yang, Y., Wang, S., Xie, Y., Sun, M., Chen, X. and Xu, J., "Numerical Simulation and Thermal Analysis of Stratospheric Airship". 2014 Asia-Pacific International Symposium on Aerospace Technology, 2014. DOI: http://dx.doi.org/10.1016/j.proeng.2014.12.600.
  27. Long, Y., Wang, L. and Cappelleri, D.J., "Modeling and global trajectory tracking control for an over-actuated MAV", Advanced Robotics, Vol. 28, No. 3, 2014, pp. 145-155. DOI: http://dx.doi.org/10.1080/01691864.2013.861339.
  28. Colozza, A.J., Corporation, A., Park, B. and Ohio. "Convective Array Cooling for a Solar Powered Aircraft", NASA/CR, 2003.
  29. Li, J., Lv, M., Tan, D., Zhu, W., Sun, K. and Zhang, Y., "Output performance analyses of solar array on stratospheric airship with thermal effect", Applied Thermal Engineering, Vol. 104, No. 2016, pp. 743-750. DOI: http://dx.doi.org/10.1016/j.applthermaleng.2016.05.122.
  30. Li, J., Lv, M., Sun, K. and Zhu, W., "Thermal insulation performance of lightweight substrate for solar array on stratospheric airships", Applied Thermal Engineering, Vol. 107, No. 2016, pp. 1158-1165. DOI: http://dx.doi.org/10.1016/j.applthermaleng.2016.07.045.
  31. Xiong, J., Bai, J.B. and Chen, L., "Simplified analytical model for predicting the temperature of balloon on highaltitude", International Journal of Thermal Sciences, Vol. 76, No. 2014, pp. 82-89. DOI: http://dx.doi.org/ 10.1016/j.ijthermalsci.2013.08.002.