DOI QR코드

DOI QR Code

Low temperature wet-chemical synthesis of spherical hydroxyapatite nanoparticles and their in situ cytotoxicity study

  • Mondal, Sudip (Instituto de Fisica, Universidad Autonoma de Puebla) ;
  • Dey, Apurba (Department of Biotechnology, National Institute of Technology Durgapur) ;
  • Pal, Umapada (Instituto de Fisica, Universidad Autonoma de Puebla)
  • 투고 : 2016.08.24
  • 심사 : 2016.10.25
  • 발행 : 2016.12.25

초록

The present research work reports a low temperature ($40^{\circ}C$) chemical precipitation technique for synthesizing hydroxyapatite (HAp) nanoparticles of spherical morphology through a simple reaction of calcium nitrate tetrahydrate and di-ammonium hydrogen phosphate at pH 11. The crystallinity of the single-phase nanoparticles could be improved by calcinating at $600^{\circ}C$ in air. Thermogravimetric and differential thermal analysis (TG-DTA) revealed the synthesized HAp is stable up to $1200^{\circ}C$. Scanning electron microscopy (SEM) and energy dispersive spectroscopy (EDS) studies confirmed the formation of spherical nanoparticles with average size of $23.15{\pm}2.56nm$ and Ca/P ratio of 1.70. Brunauer-Emmett-Teller (BET) isotherm of the nanoparticles revealed their porous structure with average pore size of about 24.47 nm and average surface area of $78.4m2g^{-1}$. Fourier transform infrared spectroscopy (FTIR) was used to confirm the formation of P-O, OH, C-O chemical bonds. Cytotoxicity and MTT assay on MG63 osteogenic cell lines revealed nontoxic bioactive nature of the synthesized HAp nanoparticles.

키워드

과제정보

연구 과제 주관 기관 : VIEP and DITCo, BUAP

참고문헌

  1. Adhikary, K., Takahashi, M. and Kikkawa, S. (2004), "Synthesis and sintering of nanocrystalline hydroxyapatite powders by citric acid sol-gel combustion method", Mater. Res. Bull., 39, 25-32. https://doi.org/10.1016/j.materresbull.2003.09.022
  2. Biamino, S. and Badini, C. (2004), "Combustion synthesis of lanthanum chromite starting from water solutions: Investigation of process mechanism by DTA-TGA-MS", J. Eur. Ceram. Soc., 24, 3021-3034. https://doi.org/10.1016/j.jeurceramsoc.2003.10.005
  3. Deram, V., Minichiello, R., Maguer, A. Le., Pawlowski, L. and Murano, D. (2003), "Microstructural characterizations of plasma sprayed hydroxyapatite coatings", Surf. Coat. Technol., 166(2003), 153-159. https://doi.org/10.1016/S0257-8972(02)00855-1
  4. Fu, Y.C., Ho, M.L., Wu, S.C., Hsieh, H.S. and Wang, C.K. (2008), "Porous bioceramic bead prepared by calcium phosphate with sodium alginate gel and PE powder", Mater. Sci. Eng. C., 28, 1149-1158. https://doi.org/10.1016/j.msec.2007.09.001
  5. Furuzono, T., Sonoda, K. and Tanaka, J. (2001), "A hydroxyapatite coating covalently linked onto a silicone implant material", J. Biomed. Mater. Res., 56(1), 9-16. https://doi.org/10.1002/1097-4636(200107)56:1<9::AID-JBM1073>3.0.CO;2-2
  6. Gross, K.A., Berndt, C.C., Stephens, P. and Dinnebier, R. (1998), "Oxyapatite in hydroxyapatite coatings", J. Mater. Sci., 33(15), 3985-3991. https://doi.org/10.1023/A:1004605014652
  7. Han, Y., Wang, X. and Cheni, X. (2004), "Synthesis and sintering of nanocrystalline hydroxyapatite powders by citric acid sol-gel combustion method", Mater. Res. Bull., 39(1), 25-32. https://doi.org/10.1016/j.materresbull.2003.09.022
  8. Jillavenkatesa, A., Hoelzer, D.T. and Condrate, Sr. R.A. (1999), "An electron microscopy study of the formation of hydroxyapatite through sol-gel processing", J. Mater. Sci., 34(19), 4821-4830. https://doi.org/10.1023/A:1004607709747
  9. Kehoe, S. (2008), "Optimisation of hydroxyapatite (HAp) for orthoapedic application via the chemical precipitation technique", PhD Thesis, Dublin City University.
  10. Kehoe, S. (2008), Calcium Phosphates for Medical Applications, Eds. L. Looney & J. Stokes, (C) Dublin City University, ISBN 1-87232-776-1, ISSN 1649-8232.
  11. Khal, E.M. and Batis, N.H. (2015), "Effects of temperature on the preparation and characteristics of hydroxyapatite and its adsorptive properties toward lead", New J. Chem., 39, 3597-3607. https://doi.org/10.1039/C4NJ01836B
  12. Komath, M., Varma, H.K. and Sivakumar, R. (2000), "On the development of an apatitic calcium phosphate bone cement", Bul. Mater. Sci., 23(2), 135-140. https://doi.org/10.1007/BF02706555
  13. Kuriakose, T.A., Kalkura, S.N., Palanichamy, M., Arivuoli, D., Dierks, K., Bocelli, G. and Betzel, C. (2004), "Synthesis of stoichiometric nano crystalline hydroxyapatite by ethanol-based sol-gel technique at low temperature", J. Cryst. Growth, 263, 517-523. https://doi.org/10.1016/j.jcrysgro.2003.11.057
  14. Liu, D.M., Troczynski, T. and Tseng, W.J. (2001), "Water-based sol-gel synthesis of hydroxyapatite:process development", Biomater., 22(13), 1721-1730. https://doi.org/10.1016/S0142-9612(00)00332-X
  15. Liu, D.M., Yang, Q., Troczynski, T. and Tseng, W.J. (2002), "Structural evolution of sol-gel-derived hydroxyapatite", Biomater., 23(7), 1679-1687. https://doi.org/10.1016/S0142-9612(01)00295-2
  16. Lowell, S. (1979), Introduction to Powder Surface Area, John Wiley and Sons, Toronto.
  17. Mobasherpour, I., Soulati Heshajin, M., Kazemzadeh, A. and Zakeri M. (2007), "Synthesis of nanocrystalline hydroxyapatite by using precipitation method", J. Alloy. Compd., 430, 330-333. https://doi.org/10.1016/j.jallcom.2006.05.018
  18. Mondal, S., Bardhan. R., Mondal, B., Dey, A., Mukhopadhyay, S.S., Roy, S., Guha, R. and Roy, K. (2012), "Synthesis, characterization and in vitro cytotoxicity assessment of hydroxyapatite from different bioresources for tissue engineering application", Bull. Mater. Sci., 35(4), 683-691. https://doi.org/10.1007/s12034-012-0346-y
  19. Mondal, S., Mahata, S., Kundu, S. and Mondal, B. (2010), "Processing of natural resourced hydroxyapatite ceramics from fish scale", Adv. Appl. Ceram., 109(4), 234-239. https://doi.org/10.1179/174367613X13789812714425
  20. Mondal, S., Mondal, A., Mandal, N., Mondal, B., Mukhopadhyay, S.S., Dey, A. and Singh, S. (2014), "Physico-chemical characterization and biological response of Labeo rohita derived hydroxyapatite scaffold", Bioprocess. Biosyst. Eng., 37, 1233-1240. https://doi.org/10.1007/s00449-013-1095-z
  21. Mondal, S., Mondal, B., Dey, A. and Mukhopadhyay, S.S. (2012), "Studies on processing and characterization of hydroxyapatite biomaterials from different bio wastes", J. Miner. Mat. Charac. Eng., 11(1), 55-67.
  22. Mondal, S., Pal, U. and Dey, A. (2016), "Natural origin hydroxyapatite scaffold as potential bone tissue engineering substitute", Ceram. Int., dx.doi.org/10.1016/j.ceramint.2016.08.165.
  23. Monma, H. and Takahashi, T. (1987), "Preparation and thermal changes of carbonate containing apatite", Gypsum and Lime., 210, 287-291.
  24. Morales, J.G., Burgues, J.J., Boix, T., Fraile, J. and Clemente R.R. (2001), "Precipitation of stoichiometric hydroxyapatite by a continuous method", Cryst. Res. Technol., 36(1), 15-26. https://doi.org/10.1002/1521-4079(200101)36:1<15::AID-CRAT15>3.0.CO;2-E
  25. Nagai, M. and Nishino, T. (1988), "A new type of $CO_2$ gas sensor comprising porous hydroxyapatite ceramics", Sensor. Actuat., 15(2), 145-151. https://doi.org/10.1016/0250-6874(88)87004-5
  26. Nasiri-Tabrizi, B., Honarmandi, P., Ebrahimi-Kahrizsangi, R. and Honarmandi, P. (2009), "Synthesis of nanosize single-crystal hydroxyapatite via mechanochemical method", Mater. Letts., 63, 543-546. https://doi.org/10.1016/j.matlet.2008.11.030
  27. Panda, R.N., Ming-Fa, H., Chung, R.J. and Chin, T.S. (2001), "X-Ray diffractometry and X-Ray photoelectron spectroscopy investigations of nanocrytalline hydroxyapatite synthesized by a hydroxide gel technique", Jpn. J. Appl. Phys., 40, 5030-5035. https://doi.org/10.1143/JJAP.40.5030
  28. Raynaud, S., Champion, E., Assollant, D.B. and Thomas, P. (2002), "Calcium phosphate apatites with variable Ca/P atomic ratio I. Synthesis, characterisation and thermal stability of powder", Biomater., 23(4), 1065-1072. https://doi.org/10.1016/S0142-9612(01)00218-6
  29. Rivera, E.M., Araiza, M., Brostow, W., Castano, V.M., Diaz-Estrada, J.R., Hernandez, R. and Rodriguez., J.R. (1999), "Synthesis of hydroxyapatite from eggshells", Mater. Lett., 41(3), 128-134. https://doi.org/10.1016/S0167-577X(99)00118-4
  30. Sarig, S. and Kahana, E. (2002), "Rapid formation of nanocrystalline apatite", J. Crystal Growth., 237, 55-59.
  31. Shih, W.J., Chen, Y.F., Wang, M.C. and Hon, M.H. (2004), "Crystal growth and morphology of the nanosized hydroxyapatite powders synthesized from $CaHPO_4{\cdot}_2H_2O$ and $CaCO_3$ by hydrolysis method", J. Cryst. Growth, 270, 211-218. https://doi.org/10.1016/j.jcrysgro.2004.06.023
  32. Shojai, M.S., Khorasani, M.T., Khoshdargi, E.D. and Jamshidi. A. (2013), "Synthesis methods for nanosized hydroxyapatite with diverse structures", Acta Biomater., 9(8), 7591-7621. https://doi.org/10.1016/j.actbio.2013.04.012
  33. Song, T., Wen, S. and Li, M. (2002), "The investigation on preparation and physicochemical process of nanosized hydroxyapatite powder", Mat. Res. Soc. Symp. Proc., 724, 135-140.
  34. Sridhar, T.M., Mudali, U.K. and, Subbaiyan, M. (2003), "Sintering atmosphere and temperature effects on hydroxyapatite coated type 316L stainless steel", Corros. Sci., 45(10), 2337-2359. https://doi.org/10.1016/S0010-938X(03)00063-5
  35. Stockert, J.C., Castro, A.B., Canete, M., Horobin, R.W. and Villanueva, A. (2012), "MTT assay for cell viability: Intracellular localization of the formazan product is in lipid droplets", Acta Histochemica., 114(8), 785-796. https://doi.org/10.1016/j.acthis.2012.01.006
  36. Tampieri, A., Celotti, G., Sprio, S. and Mingazzini, C. (2000), "Characteristics of synthetic hydroxyapatites and attempts to improve their thermal stability", Mater. Chem. Phys., 64(1), 54-61. https://doi.org/10.1016/S0254-0584(99)00252-7
  37. Tampieri, A., Celotti, G., Szontagh, F. and Landi, E. (1997), "Sintering and characterization of HA and TCP bioceramics with control of their strength and phase purity", J. Mater. Sci. Mater. Med., 8(1), 29-37. https://doi.org/10.1023/A:1018538212328
  38. Tanaka, H., Chikazawa, M., Kandori, K. and Ishikawa, T. (2000), "Influence of thermal treatment on the structure of calcium hydroxyapatite", Phys. Chem. Chem. Phys., 2, 2647-2650. https://doi.org/10.1039/b001877p
  39. Tsui, Y.C., Doyle, C. and Clyne, T.W. (1998), "Plasma sprayed hydroxyapatite coatings on titanium substrates Part 1: Mechanical properties and residual stress levels", Biomater., 19(22), 2015-2029. https://doi.org/10.1016/S0142-9612(98)00103-3
  40. Uskokovic, V. and Wu, M.V. (2016), "Calcium Phosphate as a Key Material for Socially Responsible Tissue Engineering", Mater., 9(434), 1-27.
  41. Vaidhynathan, B. and Rao, K.J., (1996), "Rapid microwave assisted synthesis of hydroxyapatite", Bull. Mater. Sci., 19(6) 1163-1165. https://doi.org/10.1007/BF02744651
  42. Varma, H.K., Kalkura, S.N. and Sivakumar, R. (1998), "Polymeric precursor route for the preparation of calcium phosphate compounds", Ceram. Int., 24(6), 467-470. https://doi.org/10.1016/S0272-8842(97)00038-2
  43. Xu, J.L., Khor, K.A., Dong, Z.L., Gu, Y.W., Kumar, R. and Cheang, P. (2004), "Preparation and characterization of nano-sized hydroxyapatite powders produced in a radio frequency (RF) thermal plasma", Mater. Sci. Eng. A., 374, 101-108. https://doi.org/10.1016/j.msea.2003.12.040

피인용 문헌

  1. Synthesis of hydroxyapatite from meti shells (batissa violecea l. Von Lamark 1818) by wet precipitation method vol.1434, pp.None, 2016, https://doi.org/10.1088/1742-6596/1434/1/012023
  2. Growth of dispersed hydroxyapatite crystals highly intertwined with TEMPO-oxidized cellulose nanofiber vol.22, pp.29, 2016, https://doi.org/10.1039/d0ce00740d
  3. Sol–gel based synthesis and biological properties of zinc integrated nano bioglass ceramics for bone tissue regeneration vol.32, pp.1, 2016, https://doi.org/10.1007/s10856-020-06478-3
  4. Influence of Terbium Ions and Their Concentration on the Photoluminescence Properties of Hydroxyapatite for Biomedical Applications vol.11, pp.9, 2016, https://doi.org/10.3390/nano11092442
  5. Modified hydroxyapatite nanoparticles reinforced nanocomposite hydrogels based on gelatin/oxidized alginate via Schiff base reaction vol.2, pp.None, 2016, https://doi.org/10.1016/j.carpta.2021.100056