DOI QR코드

DOI QR Code

Biologically activated graphite fiber electrode for autotrophic acetate production from CO2 in a bioelectrochemical system

  • Im, Chae Ho (School of Chemical and Biomolecular Engineering, Pusan National University) ;
  • Song, Young Eun (School of Chemical and Biomolecular Engineering, Pusan National University) ;
  • Jeon, Byong-Hun (Department of Natural Resources and Environmental Engineering, Hanyang University) ;
  • Kim, Jung Rae (School of Chemical and Biomolecular Engineering, Pusan National University)
  • Received : 2016.05.22
  • Accepted : 2016.08.24
  • Published : 2016.10.31

Abstract

Keywords

References

  1. Kondaveeti S, Min B. Bioelectrochemical reduction of volatile fatty acids in anaerobic digestion effluent for the production of biofuels. Water Res, 87, 137 (2015). http://dx.doi.org/10.1016/j.watres.2015.09.011.
  2. Tremblay PL, Höglund D, Koza A, Bonde I, Zhang T. Adaptation of the autotrophic acetogen Sporomusa ovata to methanol accelerates the conversion of CO2 to organic products. Sci Rep, 5, 16168 (2015). http://dx.doi.org/10.1038/srep16168.
  3. Nevin KP, Woodard TL, Franks AE, Summers ZM, Lovley DR. Microbial electrosynthesis: feeding microbes electricity to convert carbon dioxide and water to multicarbon extracellular organic compounds. MBio, 1, e00103 (2010). http://dx.doi.org/10.1128/mBio.00103-10.
  4. Nevin KP, Hensley SA, Franks AE, Summers ZM, Ou J, Woodard TL, Snoeyenbos-West OL, Lovley DR. Electrosynthesis of organic compounds from carbon dioxide is catalyzed by a diversity of acetogenic microorganisms. Appl Environ Microbiol, 77, 2882 (2011). http://dx.doi.org/10.1128/AEM.02642-10.
  5. Steinbusch KJJ, Hamelers HVM, Schaap JD, Kampman C, Buisman CJ. Bioelectrochemical ethanol production through mediated acetate reduction by mixed cultures. Environ Sci Technol, 44, 513 (2010). http://dx.doi.org/10.1021/es902371e.
  6. Marshall CW, Ross DE, Fichot EB, Norman RS, May HD. Electrosynthesis of commodity chemicals by an autotrophic microbial community. Appl Environ Microbiol, 78, 8412 (2012). http://dx.doi.org/10.1128/AEM.02401-12.
  7. Zaybak Z, Pisciotta JM, Tokash JC, Logan BE. Enhanced startup of anaerobic facultatively autotrophic biocathodes in bioelectrochemical systems. J Biotechnol, 168, 478 (2013). http://dx.doi.org/10.1016/j.jbiotec.2013.10.001.
  8. Patil SA, Arends JBA, Vanwonterghem I, van Meerbergen J, Guo K, Tyson GW, Rabaey K. Selective enrichment establishes a stable performing community for microbial electrosynthesis of acetate from CO2. Environ Sci Technol, 49, 8833 (2015). http://dx.doi.org/10.1021/es506149d.
  9. Kracke F, Vassilev I, Krömer JO. Microbial electron transport and energy conservation: the foundation for optimizing bioelectrochemical systems. Front Microbiol, 6, 575 (2015). http://dx.doi.org/10.3389/fmicb.2015.00575.
  10. Yuan H, Meng LY, Park SJ. KOH-activated graphite nanofibers as CO2 adsorbents. Carbon Lett, 19, 99 (2016). http://dx.doi.org/10.5714/cl.2016.19.099.
  11. Kim KY, Jung Y, Kim S. Study on urea precursor effect on the electroactivities of nitrogen-doped graphene nanosheets electrodes for lithium cells. Carbon Lett, 19, 40 (2016). http://dx.doi.org/10.5714/CL.2016.19.040.
  12. Zhang T, Nie H, Bain TS, Lu H, Cui M, Snoeyenbos-West OL, Franks AE, Nevin KP, Russell TP, Lovley DR. Improved cathode materials for microbial electrosynthesis. Energy Environ Sci, 6, 217 (2013). http://dx.doi.org/10.1039/c2ee23350a.
  13. Sekar N, Ramasamy RP. Electrochemical impedance spectroscopy for microbial fuel cell characterization. J Microb Biochem Technol, S6, 004, (2013). http://dx.doi.org/10.4172/1948-5948.s6-004.
  14. Harnisch F, Freguia S. A basic tutorial on cyclic voltammetry for the investigation of electroactive microbial biofilms. Chem Asian J, 7, 466 (2012). http://dx.doi.org/10.1002/asia.201100740.
  15. Cheng S, Xing D, Call DF, Logan BE. Direct biological conversion of electrical current into methane by electromethanogenesis. Environ Sci Technol, 43, 3953 (2009). http://dx.doi.org/10.1021/es803531g.
  16. Borole AP, Aaron D, Hamilton CY, Tsouris C. Understanding longterm changes in microbial fuel cell performance using electrochemical impedance spectroscopy. Environ Sci Technol, 44, 2740 (2010). http://dx.doi.org/10.1021/es9032937.
  17. Kim JR, Cheng S, Oh SE, Logan BE. Power generation using different cation, anion, and ultrafiltration membranes in microbial fuel cells. Environ Sci Technol, 41, 1004 (2007). http://dx.doi.org/10.1021/es062202m.
  18. LaBelle EV, Marshall CW, Gilbert JA, May HD. Influence of acidic pH on hydrogen and acetate production by an electrosynthetic microbiome. PLoS ONE, 9, e109935 (2014). http://dx.doi.org/10.1371/journal.pone.0109935.
  19. Premier GC, Kim JR, Massanet-Nicolau J, Kyazze G, Esteves SRR, Penumathsa BKV, Rodríguez J, Maddy J, Dinsdale RM, Guwy AJ. Integration of biohydrogen, biomethane and bioelectrochemical systems. Renew Energy, 49, 188 (2013). http://dx.doi.org/10.1016/j.renene.2012.01.035.
  20. Jourdin L, Freguia S, Donose BC, Chen J, Wallace GG, Keller J, Flexer V. A novel carbon nanotube modified scaffold as an efficient biocathode material for improved microbial electrosynthesis. J Mater Chem A, 2, 13093 (2014). http://dx.doi.org/10.1039/c4ta03101f.
  21. Batlle-Vilanova P, Puig S, Gonzalez-Olmos R, Balaguer MD, Colprim J. Continuous acetate production through microbial electrosynthesis from CO2 with microbial mixed culture. J Chem Technol Biotechnol, 91, 921 (2015). http://dx.doi.org/10.1002/jctb.4657.
  22. Fu Q, Kuramochi Y, Fukushima N, Maeda H, Sato K, Kobayashi H. Bioelectrochemical analyses of the development of a thermophilic biocathode catalyzing electromethanogenesis. Environ Sci Technol, 49, 1225 (2015). http://dx.doi.org/10.1021/es5052233.

Cited by

  1. Critical Biofilm Growth throughout Unmodified Carbon Felts Allows Continuous Bioelectrochemical Chain Elongation from CO2 up to Caproate at High Current Density vol.6, pp.2296-598X, 2018, https://doi.org/10.3389/fenrg.2018.00007
  2. MR-1 for enhanced bioelectricity generation and cell growth in a microbial fuel cell pp.02682575, 2019, https://doi.org/10.1002/jctb.5813
  3. Separation of Acetate Produced from C1 Gas Fermentation Using an Electrodialysis-Based Bioelectrochemical System vol.11, pp.10, 2018, https://doi.org/10.3390/en11102770