초고속 근접통신 기술동향
Technology Trend of High Rate Close Proximity Communications

* 이 논문은 2016년도 정부(이재용조과학자)의 제원으로 정보통신기술진흥센터의 지원을 받아 수행된 연구임(No. R0101-16-344, 초고속 스마트 서비스를 위한 5G 초고속 기술 개발).

현재 이동/무선통신 환경은 사람과 사람 간의 통신 서비스 형태뿐인 아니라 IoT 통신 서비스로 점차 확대되어가고 있으며, Wi-Fi, Bluetooth 중심의 근거리 무선통신뿐 아니라 더욱 통신망이 증가한 근접통신의 필요성이 대두되고 있다. 이에 따라 근접통신 기술 개발이 지속적으로 이루어지고 있으며, 특히 기기에 대용량 데이터 교환을 증가함에 따라 기기급의 속도를 제공하는 초고속 근접통신 기술들이 활발하게 개발되고 있다. IEEE 802에서는 주변 기기들의 적절(Point-to-Point: P2P) 통신을 지원하는 802.15.3e 초고속 근접통신 기술을 개발하고 있으며, 또한, 802.11ad의 후속 표준으로 개발이 시작된 802.11ay의 Usage Model에도 근접통신이 포함되어 있다. 본고에서는 이러한 초고속 근접통신 기술동향에 대해 기술하고자 한다.
Ⅰ. 머리말

현재 이동/무선통신 환경은 사람과 사람 간의 통신 서비스 형태뿐만 아니라 Internet of Things(IoT) 통신 서비스로 점차 확대되어가고 있으며, Wi-Fi, Bluetooth 중심의 근거리 무선통신뿐만 아니라 더욱 통신이 울려진 근접통신의 필요성이 대두되고 있다. 또한 두 기기 간 가까이 접근하기도 하면 연결이 설정되는 접근 방식의 사용자 인터페이스가 확산되고 있으며, 통신 대상은 모바일 기기에 한정되지 않고, 주변에 산재한 많은 IoT 기기까지 확산되고 있다[1].

스마트폰을 비롯한 많은 단말들의 데이터 교환은 사용자 주변에 있는 모바일 기기 또는 IoT 기기 간에 이루어지며, 미디어를 비롯한 다양한 데이터의 정보교환이 더욱 근접한 기기와 이루어지는 추세이고, 대표적인 경우는 USB를 통한, 또는 Wi-Fi를 통한 기기 간 데이터 교환이다. 따라서 사용자 주변의 앱들의 모바일/IoT 기기 간 데이터를 무선으로 아주 빠르게 송수신을 하거나 아주 가까운 거리에서 두 단말 간 직접 통신하는 통신 기술이 필요하다[2][3].

이에 따라 근접통신 기술 개발은 지속적으로 이루어지고 있으며, 특히 기기 간의 대용량 데이터 교환 등 증가함에 따라 기거급의 속도를 제공하는 초고속 근접통신 기술들이 활발하게 개발되고 있다.

IEEE 802에서는 주변 기기 간의 직접(Point-to-Point; P2P) 통신을 지원하는 802.15.3e 초고속 근접통신 기술을 개발하고 있으며, 또한 802.11ad의 후속 표준으로 개발이 시작된 802.11ay의 Usage Model에도 근접통신이 포함되어 있다.

본고에서는 이러한 초고속 근접통신 기술동향에 대해 기술하고자 한다. 특히 표준화가 마무리 단계에 접어든 IEEE 802.15.3e 기술 위주로 기술동향을 분석하며, 또한 현재 표준화가 한창 진행 중이며 근접통신을 Usage Model로 포함하고 있는 802.11ay 및 기타 근접 통신 관련 기술 동향에 대해서도 간략하게 기술한다.

Ⅱ. IEEE 802.15.3e HRCP 개요

IEEE 802.15.3e에서는 10cm 이내의 접근 거리에서 두 단말 간에 대용량 파일을 고속으로 교환할 수 있는 High Rate Close Proximity(HRCP) 표준 기술을 개발하고 있다. 802.15.3e는 Kiosk에서의 대용량 파일 다운로드, 두 단말간의 P2P 방식의 대용량 파일 측정 공유, ticket gate에서의 ‘Touch and Get’ 방식의 파일 다운로드, 무선 플래시 메모리 다이아스 혹은 무선 Solid-State Drive(SSD) 등의 Wireless storage 등을 주요 Use Case로 체계하고 있으며, 이를 위해 60GHz 빌드 예외에서 100Gbps까지 지원할 수 있는 PHY mode를 지원하고, 2msec 이내의 빠른 링크 셋업, 빠른 링크 해제를 제공하며, 두 단말 간의 접근 거리에서의 직접 통신방식을 제공하는 저속감도, 저비용, 저전력 통신 기술 표준을 개발하고 있다.

60GHz 대역에서의 근접통신 기술 표준 개발에 대한 논의는 2014년부터 시작되었으며, 2014년 5월에 생성된 802.15.3d Task Group에서 근접통신 기술 표준에 대한 초기 논의가 진행되었고, 2014년 11월에 802.15.3d로부터 10cm 거리의 통신을 위해 최적화된 표준 부분을 별도의 Task Group으로 분리하여 표준화를 추진하기로 함의가 이루어졌으며, 첫 번째 802.15.3e Task Group 회의가 2015년 3월에 개최되었다.

(그림 1)은 IEEE 802.15.3e의 표준화 일정을 나타낸 그림이다. 2015년 5월 회의에서 CMD(Channel Model Document), TGD(Technical Guidance Document) 가 승인되었으며, CFP(Call For Proposal)이 시작되었다. 2015년 7월 회의에서 Preliminary Full Proposal에 대한 발표가 진행되었으며, Sony, Toshiba, NTT, JRC 등이 연합한 TransferJet 진영의 Full Proposal과 ETRI Full Proposal 두 개의 Full Proposal이 발표되었다. 이
후 ETRI의 저속장소, 지가격, 저진폭 용을 위한 On-Off Keying(OKK) PHY와 TransferJet 진영의 초고속 전송을 위한 Single-Carrier(S/C) PHY의 2가지 모드를 두는 Dual PHY를 지원하고, MAC은 공통의 Single MAC를 두는 것으로 함의가 이루어져 2015년 9월 표준화 회의에서의 하나로 합쳐진 Full Proposal이 공용으로 제안되었다. 이로써 하나의 harmonized proposal이 만들어졌고, 2016년 1월 회의에서 ETRI가 추가 제안한 초고속 근접통신을 위한 보안 규격까지 포함한 802.15.3e Draft 1.0이 승인되고 Working Group Letter Ballot이 시작되었다. 2017년 7월 회의까지 수 차례의 Working Group Letter Ballot을 통해 802.15.3e Draft 4.0이 승인되었고, 7월 회의 직후부터 Sponsor Ballot이 진행 중이다. 802.15.3는 2017년 1~3월에 최종 표준 규격이 승인될 것으로 예상된다.

III. 802.15.3e Use Case 및 기술 요구사항

1. 802.15.3e Use Case

가. Kiosk Downloading

Kiosk Downloading 시나리오는 공공장소에 설치된 Kiosk에서 초고속 파일 다운로드 서비스를 제공하며, 사용자가 Kiosk 터미널 앞에 멸추어 서서 매뉴에서 콘텐츠를 선택하고, 터미널의 지정된 영역에 사용자 단말을 올려놓고 선택한 콘텐츠를 다운로드 받는 시나리오이다. 이 시나리오에서 총 전송 시간은 3초 이내여야 하며, 전송거리는 50mm 이내여야 한다[4].

나. Close Proximity P2P

Close Proximity Point-to-Point(P2P) 시나리오는 스마트폰, 디지털 가바라, 캠퍼다, TV, 게임기, 프린터 등을 포함한 두 사용자 단말간의 초고속 P2P 파일 교환을 하는 시나리오이며, 비접촉시 P2P 무선 전송을 지원한다. 사용자는 단지 한번의 touch action을 통해 한 단말에서 다른 단말로 데이터를 초고속으로 전송할 수 있다. 예를들어, 여행자가 자신의 스마트폰을 PC에 접근시켜 스마트폰의 디지털 비디오를 PC에 저장할 수 있다[4].

다. Ticket Gates

(그림 2)는 802.15.3e의 Ticket Gates 시나리오를 나타낸 그림이다. 사용자가 Ticket Gate 앞에서 완전히 멈추지 않고 Gate를 통과하면서 특정 영역을 touch하여 데이터를 전송하는 시나리오이다. 이 경우 Link setup 소요 시간이 2ms에 이내여야 한다. 또한, 인접한 lane을 통과하는 다른 단말과의 잘못된 연결을 막아야 하며, 전송거리는 50mm 이내여야 한다[4].
라. Wireless Data Storage

(그림 3)은 802.15.3e의 Wireless data storage 시나리오를 나타낸 그림이다. 무선 채널에 메보리 디바이스 혹은 무선 SSD, 게임 카드, 스마트 포스터 등을 이용한 대용량 데이터 전송 시나리오로, 예를 들어 사용자가 무선 저장장치를 TV 혹은 PC 등의 장치에 넣으면 연결이 이루어지고, 사용자가 저장장치를 치우지 않으면 링크가 계속 유지되도록 할 수 있다. 또한, 스마트 포스터로부터 사용자의 스마트폰으로 touch action을 통해 데이터를 전송받을 수도 있다[4].

2. 802.15.3e 기술 요구사항

IEEE 802.15.3e TGD(Technical Guidance Document)에서 기술하고 있는 802.15.3e의 기술 요구사항을 요약하면 다음과 같다[4].

가. Functional Requirements

- 연결은 항상 두 개의 디바이스로 제한되며, 토폴로지는 반드시 P2P이어야 함.
- 네트워크 식별자 없이 link setup을 할 수 있어야 하며, link setup 시간은 2msec 이하여야 함.
- 빌포밍 없이 주위의 다른 시스템에 대한 spatial division을 제공해야 함.
- data 전송 전에 CSMA/CA를 사용하지 않음.
- 연결이 이루어진 이후에는 주기적인 management frame 전송을 하지 않음.
- Peer device가 멀어진 경우 즉시 연결을 해제하고 대기 상태로 돌아가야 함.

나. Performance Requirements

- 60GHz 비먼지 대역을 사용하며, Ch2를 다플릿 채널로 사용한다. Ch2와 Ch3를 지원해야 하며, 채널 빈딩 혹은 channel aggregation을 사용할 수도 있음.
- 전송 범위는 steering이나 빌포밍 없이 100 mm 이내를 유지해야 한다. 두 기기가 전송거리 상에서 기기 간의 연결이 끊어지지 않음.
- MIMO를 사용할 수도 있음.
- 10Gbps까지의 PHY rate를 지원할 수 있어야 함.

또한, TGD의 System criteria에서는 두 기기가 접근하여 거리가 1cm 이내가 되면 연결 설정을 trigger하는 Touch Action 지원을 요구하고 있다.

IV. IEEE 802.15.3e MAC 기술

이번 절에서는 IEEE 802.15.3e Draft 4.0에 포함되어 있는 주요 MAC 기술들을 소개한다[5].

1. IEEE 802.15.3e Pairnet

802.15.3e에서는 Pairnet이라는 별도의 구조를 네트워크 구조를 사용하며, Pairnet은 최대 두 대의 DEV로 구성된다. 다른 DEV와 연결하기 위해서는 현재의 Pairnet
이 먼저 연결 해제되어야 한다. 일반적인 통신 거리는 10cm 이하이다.

다른 DEV가 연결되도록 하기 위해 DEV는 디플트 채널인 Ch2로 비콘 신호를 전송한다. 비콘을 전송하는 DEV를 HRCP Coordinator(HRPC PNC)라고 한다.

DEV는 비콘 수신 후 비콘에 명시된 Access Slot 중 하나를 사용하여 Association Request command를 전송하여 HRCP PNC에 연결된다. 연결이 이루어지면 HRCP PNC는 비콘 전송을 중단하며, association process 완료 후 두 DEV 간의 P2P 데이터 전송이 시작된다. HRCP PNC 혹은 DEV가 연결되었던 상태가 사라졌다고 판단하면 Pairnet이 종료된다. HRCP PNC 혹은 DEV는 Disassociate Request command를 전송하여 Pairnet을 종료할 수도 있다. Pairnet 종료 이후 HRCP PNC는 새로운 Pairnet을 생성하기 위해 비콘 전송을 다시 시작할 수도 있다[5].

2. 802.15.3e Superframe

(그림 4)는 802.15.3e의 superframe 구조를 나타낸 것이다. Associated Phase에서의 Point-to-Point Access Period(PPAP)의 액세스 방법은 Unassociated Phase에서의 액세스 방법과 다르다.

- Unassociated Phase

HRCP PNC가 P2P connection을 시작하기 위해 주기적으로 비콘을 전송한다. 비콘은 target DEV가 Association Request를 보내는 데 사용할 수 있는 access slot의 개수와 duration 정보를 포함하고 있다. Target DEV는 Association Request를 전송하기 위해 access slot을 하나 선택하여 선택된 access slot의 시작 시점에 Association Request command를 전송한다.

- Associated Phase

모든 frame은 SIFS 혹은 RIFS 간격을 사용한 access 방법을 사용하여 전송됨.

3. 802.15.3e Channel Access

가. IFS Parameter

HRCP DEV는 SIFS와 RIFS만 사용한다. SIFS는 Rx-Tx turnaround time이 필요할 때 가장 짧은 IFS(Interframe Space)이다. PPAP의 synchronous phase 동안에는 모든 DEV가 SIFS를 사용해야 하고 전송 전한 을 교대로 갖는다. PPAP의 asynchronous phase 동안에는 모든 DEV가 RIFS를 사용한다. HRCP PNC의 RIFS 값은 항상 associate된 DEV의 RIFS 값보다 짧다[5].

나. Association 이후의 PPAP

PPAP에서는 Stk-ACK(Stack Acknowledgment)이 data frame acknowledgement를 위해 사용된다. Stk-
ACK은 MAC header에 표시되며, data payload에 piggyback되어 전송될 수도 있다. PPA는 두 가지 phase(synchronous phase와 asynchronous phase)를 갖는다.

link setup 완료 이후 혹은 다음 점에서 설명하는 DEV 간의 Ping-Pong 전송이 지속될 때, 즉 frame 교환이 SIFS 간격을 사용하여 지속될 때의 phase는 synchronous phase이다. 나머지 경우의 phase는 asynchronous phase이다[5].

다. Ping-Pong 전송과 Stk-ACK
 (Synchronous phase)

(그림 5)는 Ping-Pong 채널 액세스 및 Stk-ACK 개천 동작을 나타낸 것이다.

Synchronous phase 동안 두 DEV는 프레임 사이에 SIFS 간격을 사용하는 ping-pong 전송을 수행한다. 만약 DEV가 어떠한 data 오류도 없이 N+1에서 N+4까지의 subframe을 수신받으면, 해당 DEV는 다음 전송시드 Stk-ACK에 N+4를 설정한다. Stk-ACK는 다음 data frame 전송에 piggyback되어 전송될 수도 있다.

만약 DEV가 자신의 전송 단계에서 전송한 data가 없거나 synchronous phase를 유지하기 위해 data는 없고 가장 마지막에 수신한 sequence number를 포함한 Stk-ACK를 전송한다. 그림의 Time #3에 도시되어 있는 것처럼 DEV가 subheader나 subframe에 오류가 있는 것을 감지한 경우, 해당 DEV는 오류가 있는 subframe 및 그 다음의 모든 subframe들을 버리고, 다음에 전송하는 frame의 MAC header의 ACK information field에 가장 마지막으로 오류없이 수신한 subframe의 sequence number를 설정한다.

라. Recovery Process (Asynchronous Phase)

(그림 6)은 Recovery Process를 나타낸 것이다. 만약 target DEV에서 MAC header 오류를 감지하거나 ACK frame을 놓친다면, Pairnet의 DEV들은 asynchronous phase에 전입한다. 또한, 목적지에서 PHY가 오류를 보고하면, 해당 DEV는 asynchronous phase에 전입할 수 있다. DEV가 asynchronous phase에 들어가면, 해당 DEV는 recovery process를 수행한다. Pairnet에 속한 각 DEV는 RIFS를 사용해 medium을 access하고 data payload가 없는 frame을 전송한다. 전송 frame의 MAC header에 항상 Stk-ACK 정보가 설정되어야 한다. HRCP PNC와 DEV는 서로 다른 RIFS 값을 사용한다. DEV가 RIFS 안에 frame을 수신하였고 해당 frame의 MAC header에 오류가 없다면, DEV는 synchronous phase에 진입했다고 판단한다.

(그림 5) Ping-pong 채널 액세스 및 Stk-ACK[5]

(그림 6) Synchronization Recovery Process
V. IEEE 802.15.3e PHY 기술

이번 절에서는 IEEE 802.15.3e Draft 4.0에 포함된 PHY 기술 중 OOK PHY 중심으로 소개한다[5].

802.15.3e는 On-Off Keying(OOK) PHY와 SC (Single-Carrier) PHY의 2가지 모드를 지원한다. OOK PHY는 저부하도, 저가격, 저전력을 위한 PHY로, modulation 방식은 OOK만 가지만 사용하고, FEC scheme은 Reed Solomon(RS) coding만을 사용한다. MIMO는 사용하지 않으며, 보다 높은 throughput을 위해 채널 분담을 사용한다. 최대 PHY rate는 4 channel bonding 사용시 6.5Gbps이다.

SC PHY는 초고속 전송을 위한 PHY로, 싱글 채널 사용시 13Gbps를 지원하며, MIMO 사용 시 최대 157 Gbps까지 지원 가능하다. SC PHY는 256 QAM까지 지원하며, FEC scheme은 rate-compatible LDPC(low-density parity-check)를 사용한다.

802.15.3e DEV는 둘 중 한 가지 PHY만 지원해도 되며, 두 가지 PHY 모두를 지원할 수도 있다. HRCP PNC가 두 가지 PHY 모두를 지원할 경우, OOK PHY beacon과 SC PHY beacon을 변환하거니 전송하여 OOK PHY 혹은 SC PHY를 지원하는 DEV와 connection을 설정할 수 있다. (그림 7)은 dual mode beacon 전송을 통해 두 가지 DEV 모두로부터 연결을 설정할 수 있게 하는 예를 나타낸 그림이다[6].

1. HRCP–OOK PHY를 위한 Channelization

(그림 8)은 HRCP–OOK PHY를 위한 channelization을 나타낸 그림이다. 채널 본당이 사용되지 않는 경우는 다 플랫 채널인 Ch2만 사용하고, 2 채널 본당 시는 Ch2 및 Ch3을 사용하고, 3 채널 본당 시는 Ch1, 2, 3을 사용하고, 4 채널 본당 시는 Ch 1~4를 사용한다. 초음파 통신에서는 두 DEV 간에 모든 채널이 항상 사용가능하다고 볼 수 있기 때문에, 이렇게 사용하는 채널을 특정 채널로 고정시킬 경우 HRCP PNC discovery, 채널 선택, 채널 시그널링 등을 단순화 할 수 있다.

2. HRCP–OOK PHY Frame 구조

HRCP–OOK PHY frame 구조는 (그림 9)과 같다. 결합된 PHY header와 MAC header는 ITU-T CRC–16 base HCS로 보호되며, 결합된 PHY header, MAC header, HCS에 대해 RS parity bit이 생성된다.

Preamble은 PHY네에서 만들어지는 신호로 AGC, 시간 동기, 주파수 동기, 프레임 동기 송 수신 복조기에서 전송된 프레임을 복조하기 위해서 사용된다. HRCP–
OOK PHY Preamble 구조는 (그림 10)과 같다.

각 필드에 사용되는 시퀀스들은 128비트의 Golay sequence b_{128}로 구성된다. SYNC 필드는 frame detection을 위해 사용되고, Start Frame Delimiter(SFD)는 프레임의 시작을 알려주는 delimiter 역할 및 CES 사용 여부 표시, OOK MCS 관련 정보를 나타내 준다. Channel Estimation Sequence(CES)는 채널 추정을 위해 사용된다.

SFD 필드의 SFD1은 프레임의 시작을 알려주는 delimiter 역할을 하며, 또한 SFD1이 없어 CES 필드의 사용 여부를 알려주는 역할을 한다. SFD2, SFD3 및 SFD4의 패턴을 이용해 채널 분명 개수, Spreading Factor를 표시할 수 있다.

Channel bonding이 사용되는 경우, robustness을 위해 (그림 10)의 Preamble 기본 구조를 변경된 채널 갤 수 만들 반복한다. Preamble 반복을 사용함으로써, Preamble, SYNC, SFD, CES의 duration이 channel bonding이 사용되더라도 항상 동일해진다.

1. 802.11ay의 근접통신 관련 Use Case

802.11ay의 Use Case 문서에서는 근접 통신 시나리오인 Ultra Short Range(USR) Communication 시나리오가 포함되어 있다[8]. (그림 11)은 802.11ay의 USR Communication Usage Model을 나타낸 것이다.

802.15.3와 유사하게 P2P 구조이며, 두 단말 간의 빠른 대용량 데이터 교환을 위한 Usage Model이다. 100msec 이내의 빠른 link setup, 1초 이내의 transaction time, 10cm 미만의 초근접 거리에서 10 Gbps data rate를 제공해야 하며, 400mW 미만의 낮은 전력 소모를 요구한다.

(그림 12)는 최근에 추가로 제안되어 Usage Model로

VI. IEEE 802.11ay

최근 이더넷, HDMI, USB, DisplayPort와 같은 유선 인터페이스의 전송속도가 10Gbps를 넘어서고 있어, 이에 대응되는 초고속 무선 인터페이스가 필요하지만 기존의 IEEE 802.11ad의 전송속도는 이를 지원할 수 없으므로 802.11ad의 throughput을 20Gbps 이상으로 올리기 위한 후속 표준인 802.11ay가 개발되고 있다.

(그림 11) 802.11ay USR Communication Use Case[8]
(그림 12) 802.11ay USR Wireless Docking Use Case[9]

체택된 USR Wireless Docking Usage Model을 나타낸 것이다. 11ay 인터페이스가 스마트폰 및 무선 충전 패드에 포함되며, 스마트폰이 패드 위에 놓여지 USR 통신을 하게 된다. Interactive Game Docking Station, Remote Desktop/Cloud PC, 무선 충전 지원 Gigabit Docking 등에 활용될 수 있으며, 사용자 이벤트 발생에서 스크린 입력까지 10～50ms정도의 latency, 양방향 트래픽, 1Gbps 전송에 대해 200mW 이하의 낮은 전력 소모, 20cm 미만의 근접 거리 통신 등을 요구한다[9].

2. 802.11ay 기능 요구사항

802.11ay의 주요 기능 요구사항들은 요약하면 다음과 같다[10].

- 802.11ay 디바이스는 57～64GHz 주파수 밴드를 사용해야 함.
- MAC data Service Access Point(SAP)에서 측정했을 때 최소한 최대 throughput이 20 Gbps를 달성할 수 있어야 함.
- 802.11ad에 대한 backward compatibility를 제공해야 함.
- 동일 밴드를 사용하는 legacy device에 대한 coexistence를 제공해야 함.
- indoor 환경에서는 10미터 이상의 range, LOS(Line of Sight) 채널 조건의 outdoor 환경에서는 100미터 이상의 range를 제공해야 함.
- 최소한 legacy device와 동일한 power efficiency를 지원해야 함.
- 안전하고 빠른 link setup을 지원해야 함.
- Outdoor operation을 지원해야 함.
- 보행자 속도(예, 3km/h) 혹은 body movement에서 mobility operation을 지원해야 함.

3. 논의 중인 802.11ay 요소 기술

802.11ay SFD 개발 과정에서 논의되고 있는 주요 기술 항목들을 간단하게 요약하면 다음과 같다[11].

- 두 개 이상의 2.16GHz 채널에 대한 채널 분배
- 두 개 이상의 2,16GHz 채널 혹은 두 개 이상의 4,32GHz 채널에 대한 contiguous 혹은 non-contiguous channel aggregation
- 64-point non-uniform constellation
- SU-MIMO, Downlink MU-MIMO, SU-MIMO 및 MU-MIMO 전송을 위한 SC 및 OFDM modulation 지원
- MIMO 전송에 SC 및 OFDM modulation을 위한 Alamouti code를 포함한 transmit diversity scheme 지원
- Channel-wise DL OFDMA
- 분배된 채널에서, PCP 혹은 AP가 한 channel bandwidth 단위 내에서 다른 주파수 밴드에 할당된 다른 STA들에게 동시 전송 가능
- 11ad spatial sharing 메커니즘에 대한 multi-channel operation 확장 등

VII. 비표준 근접통신 기술

Keyssa에서는 최근 표준 규격이 아닌 자체 규격을 사용한 근접 통신 기술인 Kiss Connectivity를 개발하였다[12]. Kiss Connectivity는 Extremely High Frequencies (EHF)를 사용하는 비접촉식 고속 데이터 전송 기술로, 최근 레노버의 스마트폰 프로토타입 모델에 탑재되었다[13]. (그림 13)은 Kiss Connectivity 응용 서비스의 예이다.
(그림 13) Keyssa의 Kiss Connectivity

Kiss Connectivity는 802.15.3e보다 훨씬 가까운 거리의 무선 통신을 할 수 있으며, 6Gbps의 전송속도를 지원한다. 'Touch and Get' 서비스를 제공할 수 있으며, 단발간 통신을 위해서는 (그림 13)과 같이 연결 위치 가이드가 있어야 한다.

VIII. 맥经验值

기기 간의 대용량 데이터 교환이 증가함에 따라 기기 급속도를 제공하는 초고속 근접통신 기술들이 활발하게 개발되고 있다. 본고에서는 현재 개발 중인 초고속 근접통신 기술에 대한 동향을 기술하였다.

이러한 초고속 근접통신 기술은 향후 대용량 콘텐츠의 보급과 편리한 교환을 제공하는 다양한 서비스에 널리 적용될 것으로 전망된다.

참고문헌

용어해설

근접통신 P2P 시스템

Carrier Sense Multiple Access

MCS

MIMO

OOK

P2P

Pairnet

PPAP

SAP

SC

SFD

SFP

Stk-ACK

.Allow

Disallow

All