탄소나노튜브 기반 디지털 엑스선 튜브 기술개발 동향

Trends on the Development of Carbon Nanotube-Based Digital X-ray Tube

송은호 (Y.-H. Song) 나노전자원연구실 상장
장준재 (U.-T. Kang) 나노전자원연구실 선임연구원
김재수 (U.-W. Kim) 나노전자원연구실 선임연구원
최영철 (Y.C. Choi) 나노전자원연구실 선임연구원
박소라 (S. Park) 나노전자원연구실 선임연구원
정주우 (J.-W. Jeong) 나노전자원연구실 선임연구원

* 본 연구는 ETRI 창의연구실 사업(16ZE1140), 국가과학기술연구회의 창의형용용연구사업 (B551579-12-04-00) 및 한국연구재단 바이오의료기술개발 사업(2015M3A9E2066999)의 일환으로 수행되었습니다.

방원의 X선 및 CT 영상, 반도체 소자 내의 결합분석, 공항의 보안검색 등 다양한 분야에서 X선이 사용되고 있다. 지금까지는 이러한 X선을 발생시키기 위해 고온으로 가열하여 전자를 방출시키는 열전자원이 사용했으나, 높은 소비전력과 디지털 구동의 어려움 등의 단점이 존재한다. 이러한 한계를 극복하기 위해 전계방출원 기술, 특히 탄소나노튜브를 이용한 나노전자원의 제조 및 디지털 엑스선 튜브 응용 기술에 관한 연구가 최근 활발히 진행 중이다. 이 글을 통해 디지털 시대에 부합하는 탄소나노튜브 기반 나노전자원 및 이를 이용한 디지털 엑스선 튜브의 개념 및 제조 기술을 소개하고, ETRI 및 다른 기관들에서 개발 중인 최신 기술개발 동향을 소개하고자 한다.
I. 서론

1895년 윈트겐에 의해 발견된 익스턴은 100년 이상
열진자에 의해서만 생성되어 왔다. 그러나, 열진자 방출
은 디지털 구동이 어려우므로 지금까지 개발된 열진자
기반 익스턴 튜브는 대표적인 아날로그 소자이다. 열진
자 익스턴 소스는 텅스텐 필라멘트와 같은 전자원을 고
온으로 가열하여 방출된 전자를 타겟에 충돌시켜 발생
시킨다. 이러한 열진자 기반 익스턴 튜브는 순간적인 스
위칭이나 전류 변조가 어려우므로 디지털 방식으로 구
동되는 것이 낫해할 뿐만 아니라, 높은 소비전력, 방출
되는 전자의 에너지 분포 및 방향성, 전자 집속의 어려
움 등의 단점을 가지고 있다[1]. 열진자 기반 익스턴 튜
브가 가지고 있는 어려가기 단점을 극복하기 위한 대안
으로서 양자 역학적 터널링 현상으로 생물계 전자를 방
출하는 전계 방출원(Quantum Dots)을 이용한
익스턴 튜브의 개발이 핵심이 진행 중이다[2][3]. 전계
방출원 기반 디지털 익스턴 튜브는 열진자 기반 튜브의
단점을 개선할 수 있는 장점이 있으나, 이러한 기술의
상용화를 위해서는 고전압 하에서의 구동 신뢰성 확보,
전류 안정성 확보, 안정된 전계 방출원의 제조기술개발
등의 과제를 해결해야 한다.

지금까지 전계 방출원으로서 물리브맨(Mo), 다이아
몬드, 그래핀(Graphene), 탄소나노튜브(Carbon Nanotube: CNT) 등 다양한 소재가 제안되어 왔다. 이 중에서 탄소
나노튜브는 구조적 비등방성이 매우 커서(직경: 수 nm, 길이: 수-수십 μm) 전계 강화 인자(Enhancement Factor, B)가 크고 전기전도성 및 화학적 안정성이 우수하여 가장 유망한 전계 방출원 소재로 알려져 있다.
본 논문에서는 먼저, 탄소나노튜브 소재의 특성 및 이를
이용한 나노전자원 제조기술개발 동향을 소개하고, 탄
소나노튜브 기반 나노전자원을 이용한 디지털 익스턴
튜브의 기술개발 동향 및 향후 전망을 논하고자 한다.

II. 탄소나노튜브 기반 나노전자원 기술개발 동향

탄소나노튜브(CNT)는 단층 또는 다층의 그래핀이 원
통행으로 알려 있는 구조로서 중1차원적인 양자구조로
인해 저차원에서 나타나는 특이한 어려가기 양자현상이
관측되었으며, 특히 역학적 전도성 및 화학적 안정성이
뛰어난 것으로 밝혀졌다. 그러나도 불구하고, 구조에 따라
방도체 또는 도체의 성질을 띠며, 작정이 작고 긴 둥근
특성, 쪽이 비어 있는 특성 때문에 전계 방출 소자, 트랜지스터, 에너지 저장체, 고기능성 복합소재, 나노
크기의 각종 전자소자 등 다양한 분야에 응용성이 우수
하다. 1991년에 NEC 연구소의 Sumio Iijima 박사가 아
크방전법에 의해 최초로 탄소나노튜브 합성에 성공한[4]
이후 레이저 증발법 및 화학 가스 증착법(Chemical
Vapor Deposition, CVD)에 의한 합성법이 개발되었다.
아크방전법 및 레이저 증발법은 고품질 CNT의 합성이
가능하나 대량 합성이 어려우므로 CNT의 가격이 높다
는 단점이 있다. 이에 반해, CVD법은 그 속도의 CNT를
대량으로 합성할 수 있는 장점을 가지고 있어서 현재는
대부분의 응용 분야에서 CVD법으로 합성된 CNT를
사용하고 있다.

(그림 1)은 CNT의 구조 및 종류를 보여준다. 그림에

![CNT의 구조 및 종류](image)

송운호 외 / 탄소나노튜브 기반 디지털 익스턴 튜브 기술개발 동향 117
서 보이는 바와 같이 CNT는 탄소 원자들이 육각형으로 배열된 판 형의 그래핀으로 구성되어 있는 구조를 이루고 있는데, 이때 단층 그래핀이 일반적으로 하나의 벽을 가지는 Single WallCNT (SWCNT)를 형성하고, 다층 그래핀이 균일해지면 다중벽을 가지는 MultiwallCNT (MWCNT)가 된다. SWCNT는 ~1nm 정도로 매우 작은 직경을 가진데, 값은 반데르발스(van der Waals) 힘에 의해서 대부분 다발(Bundle) 형태로 존재한다. 앞서 언급한 바와 같이 CNT는 고전기전도성, 고열전도성, 우수한 기계적 물성 등 뛰어난 특성들이 있어서 다양한 분야에 응용할 수 있으며[5], 특히, 구조적 비등방성이 크게 화학적으로 안정하여 전계 방출 나노전자원으로 가장 유명한 재료로 알려져 있다[6].

CNT 나노전자원은 화학 기상 증착법에 의한 직접 성장을 이용한 스크린 인쇄법(Screen Printing), 잉크의 전기 영동 증착법(Electrophoretic Deposition: EPD), 분산액을 이용한 진공 투과법(Vacuum Filtration) 등을 이용하여 제작할 수 있다. 프레도이스를 이용하는 스크린 인쇄법은 우수한 전자 방출 특성을 가지고 있는 CNT 나노전자원의 다양한 생산성이 가능하다는 장점으로 인해 전계 방출 소자를 개발해 나가고 있다.

지금까지 다양한 방법을 이용하여 고성능 CNT 나노전자원 개발에 관한 연구들이 진행되었음에도 불구하고, CNT 나노전자원과 케이소드 기판과의 약한 접착력(Weak Adhesion), CNT 구조 자체의 결함(Imperfection), 낮은 전도도에 의한 열화(Degradation) 및 이러한 복합적인 문제에 기인한 파괴(Breakdown) 등의 문제점이 여전히 가지고 있다. 이러한 문제점들은 CNT 나노전자원이 실제 소자 응용계에서 적합함에 있어 가장 큰 결함으로 작용하고 있다. 특히, 지금까지 나노전자원의 가장 유명한 응용 분야였던 전계 방출 디스플레이/열전 분야에서 비교적 낮은 전류 밀도와 정수밀 기술이 요구된 것과는 달리 최근 활발하게 연구되고 있는 디지털 에스턴 튜브 분야에서는 고성숙성, 고전류밀도의 나노전자원 개발이 요구되고 있다. 이러한 기술적 요구사항의 변화에 맞추어 많은 연구 그룹에서 고성숙성, 고전류밀도의 나노전자원 개발을 진행하고 있다. 미국 노스캐롤리나 대학의 Otto Zhou 그룹은 전기 영동 증착법을 이용하여 CNT와 밀도를 캐스트에 형성하여 고전류밀도/장수명 나노전자원을 개발하였다. Otto Zhou 그룹이 개발한 CNT 나노전자원은 전계 방출 전류밀도 240mA/cm²(전류 효율: 78mA)의 정전류(Constant Current: CC) 조건 및 주기 0.1Hz, 필스폭 125ms의 필스 구동 상태의 수명 평가에서 8만 5천회 이상 안정적으로 동작하면서도 전계가 0.2% 정도만 상승하는 우수한 전계 방출 안정성을 보여주었다[8].

디지털 에스턴 튜브에 사용되는 나노전자원은 고성숙성, 고전류밀도 뿐만 아니라 에스턴튜브의 적합방법에 따라 고내열성이 특성이 요구되기도 한다. 가령, 완전 밀봉형 에스턴 튜브를 제작하면서 녹는 데는 400°C, 높게는 800°C 이상의 가열 배기 조건에서도 CNT 나노전자원을 구성하는 물질들이 증발되지 않으려면 그 특성이 유지되어야 한다. 스위스 EMPA의 Remi Longtin 그룹에서는 CNT와 무기 물질들을 혼합하여 880°C의 고온 열처리를 통해 나노전자원을 제작하였으며, 제작된 나노전자원은 전체 방출 전류밀도 100mA/cm²(전류: 약 200μA)의 조건에서 1시간 동안 전체 방출이 안정적으로 유지될을 보여주었다[7].

한국전자통신연구원(ETRI)에서는 스크린 인쇄법을 이용하여 CNT 나노전자원 제조기술을 개발하였는데, 앞서 언급한 문제점을 해결하기 위하여 존재하는 3-롤 밀링(3-Roll Milling, 3-RM) 기반의 밀링 제조법에 볼 밀링(Ball Milling, BM)을 사용하는 새로운 밀링 제조 방법을 개발하였다[8]. ETRI에서 볼 밀링에 의해 제조된 CNT 밀링은 CNT를 포함한 조성

118 전자통신등급분석 제31권 제2호 2016년 4월
(그림 2) ETRI에서 개발된 고신뢰성, 고전류밀도 CNT 나노전자원

* Reproduced with permission from Elsevier

(그림 3) ETRI CNT 나노전자원

* Reproduced with permission from Elsevier

물질을 지르코니아(ZrO₂) 볼과 함께 밀폐된 용기에 넣고 자전 및 공전을 동시에 시키는 파스트 믹서(Paste Mixer)로 혼합하여 제조하는데, 이는 기존의 3- рол 밀링에 비하여 공정이 비교적 단순할 뿐만 아니라 전 환합 과정이 단일 장비로 진행되기 때문에 최종적으로 얻어지는 코팅은 주소 재현성이 높다는 장점이 있다. 일반적으로 볼 밀링은 물질의 분쇄와 혼합으로 사용되지만 조작을 적절하게 취할 경우 CNT에 가해지는 전단력(Shed Force)을 약하게 유지할 수 있으므로 페이스트 제조 중에 발생할 수 있는 CNT의 결함을 최소화 할 수 있다. 그럼에도 불구하고, CNT 나노전자원과 캐소트 기판과의 접착성은 높이기 위해 기판과 물리화학적 반응이 일어날 수 있는 무기 바닥을 첨가하였으며, 기판과 밀림 간의 반응을 유도하기 위해 고온(800°C) 전공 열처리 후 속도 조절려 등의 공정을 실시하였다. [그림 2]는 상기 기술한 방법으로 ETRI에서 제작한 고신뢰성, 고전류밀도의 CNT 나노전자원을 보여주고 있는데, 약 200μm의 넓은 크기에 매우 긴작한 CNT 나노전자원이 형성되어 있을 수 있다. 이처럼 균일하게 제작된 CNT 나노전자원은 높은 전류 밀도가 요구되는 환경에서도 장기간 동안 안정적으로 동작하였다. (그림 3)에 ETRI에서 제작된 CNT나노전자원의 고온 전공 열처리 효과와 전전류 조건에서의 DC 신뢰성 평가 및 신뢰성 평가 후의 CNT 나노전자원의 전자기적 성능을 도시하였다. (그림 3)에서 볼 수 있는 것처럼 고온 전공 열처리를 거치지 않은 나노전자원은 일정한 전류를 발전시키기 위한 아노드 전압이 시간에 따라 급격히 증가하였다. 이에 반해, 고온(800°C) 열처리를 통해 제조된 나노전자원은 매우 높은 전류 밀도(110mA/cm², 전류: 0.9mA)를 발생하는 아노드 전압이 시간에 따라 변하지 않고 100시간 이상의 장시간 동안 높은 안정성과 신뢰성을 보이는 것을 확인하였다. 이러한 결과는 CNT 기반 디지털 일렉스 트루브의 핵심 요소기술로 여겨진다.

이와 같이, 최근 들어 다양한 방법으로 디지털 일렉스 트루브 및 CNT 나노전자원이 제조되고 있으며 높은 전류밀도와 장시간 동안 안정적으로 동작할 수 있는 높은 신뢰성을 보이는데, 그리고 일렉스 트루브의 제조 시 가격이 높은 측정 용도에서도 특성이 일좌되지 않는 높은 내열 특성을 함께 갖추고 있어야 한다는 것을 알 수 있다.
III. 탄소나노튜브 기반 디지털 엑스선 투브 기술 개발 동향

기존 양전자 기반의 엑스선 투브에서는 텔레스피필라 멘드를 1800°C 정도의 고온으로 가열하여 발생한 열전 자를 금속 태그와 충돌시켜 엑스선을 만든다. 100여 년 전에 개발된 이 기술은 제작방법이 단순하여 거의 모든 엑스선 분야에 사용되었다. 하지만 Computed Tomography (CT) 및 단층촬영, 방사선 치료 등의 의학분야는 물론이고, 매우 정밀한 영상 요구하는 반도체 소자의 결합 검사, 보안 검사 등의 산업적 응용 분야에서는 더욱 우수한 성능을 요구하고 있다. 그런데도, 양전자 기반 엑스선 투브는 순간적인 스위칭이나 정밀한 전류 조절에 어려움이 커서 이러한 산업적 요구 사항을 충족시키기 어려운 실정이다.

CNT 기반 엑스선 투브는 방출전자에 에너지 분포 및 방향성이 좋고, 임의의 엑스선 세기를 정확한 시간 범위 내에서 제어하는 디지털 구조가 가능하여 새로운 기능을 진보한 소스로 인용하기 위한 연구가 활발히 진행되고 있다. 다양한 연구 그룹에서 CNT 기반 엑스선 투브에 관한 연구성과를 보고하였는데, (표 1)은 최근에 보고된 CNT 나노전자에 적용한 엑스선 투브의 성능을 요약하여 정리한 것이다. (표 1)에서 알 수 있듯이, 탄소나노튜브 전자기기의 기능은 나노전자 기반을 이용한 엑스선 투브의 성능을 보다 정교하게 제어할 수 있는 장점은 구조에 대한 기술 개발의 중요성이 입증된다. 이에 따라 CNT 기반 엑스선 투브의 성능을 향상시키는 연구가 진행되고 있으며, 이에 따라 디지털화가 진행되고 있는 엑스선 투브 기술의 발전세를 확인할 수 있다.
전 간트리(Gantry)가 없으므로 짧은 시간에 더욱 선명한 영상을 얻을 수 있는 장점이 있다. 이러한 엑스선원은 기계적인 동작 없이 여러 개의 엑스선원에서 얻어진 이미지를 합성하므로 시스템이 간단하고 빠르며, 기계 운동에 대한 영상의 흐려짐을 방지할 수 있다. XInRay Systems사는 CNT 나노전자원 기반 sDBT를 현재 거의 상용화 수준까지 개발했고 보고하였는데, 2014년부터 임상 실험을 하고 있어 조만간 상용화에 이르는 것으로 기대된다. 또한, CNT 엑스선 소스를 유한한 각도(대학 30도 이내) 내에서 수십억 개 이내의 제한된 2차원 투사 이미지로 재구성하는 단층합성(Tomosynthesis)뿐만 아니라 360도 또는 이와 비슷하는 넓은 각도에서 수백 개의 이미지로 구성하는 CT(Computed Tomography)에서도 적용하고 있다. 쥐와 같은 소형 동물을 대상으로 호흡에 맞춰 투사 엑스선 이미지를 얻는 호흡-동조 CT의 가능성을 보여 주었으며, 최근에는 수화물 검색용 CT 시스템에도 적용 가능성을 보여주고 있다. XInRay Systems사는 향후에는 Joint Venture 회사인 NuRay Technology Co, Ltd.에서 X-ray 관련 기술개발 및 사업을 추진할 예정이라고 공표하였으며, 현재 이전 작업을 진행 중인 것으로 알려져 있다.

현재까지 보고된 대부분의 탄소나노튜브 기반 디지털 엑스선 튜브는 터보 분자 펌프(Turbo Molecular Pump: TMP) 또는 이온 펌프(Ion pump)가 달린 고진공 채비를 포함하지만, 이와 달리 진공펌프 없이 완전 진공 밀봉된 엑스선 튜브의 개발도 빠르게 진행되고 있다. 예
를 들어, 한국과학기술원에서는 이극판(Diode) 구조의 탄소나노튜브 나노전자원을 제조하고, 이를 이용하여 진공 밀봉된 트蕊을 제작하여 발표하였다[10]. 그러나, 이극판 구조는 방출되는 전류의 조절이 쉽지 않으므로 실제로 상용화하기는 어려울 것으로 예상된다. 따라서, 삼극관(Triode) 구조의 나노전자원을 적용하여 진공 밀봉된 엑스선 트蕊 제조기술이 대세를 이룰 것으로 기대되는데, 최근 한국전자통신연구원(ETRI)에서는 세라믹/금속 브레이징 공정을 개발하여 삼극관 구조의 CNT 나노전자원을 사용하면서도 진공밀봉이 완전 진공 밀봉된 디지털 엑스선 트蕊를 개발하는 데 성공하였다. 더욱이, 제조된 엑스선 트蕊는 약 30시간 이상의 장시간 동안 큰 열화 없이 안정적으로 전류가 발생하는 것을 확인하였다([그림 5] 참조, 진공 밀봉이 부착되지 않은 상태로 완전 진공 밀봉된 디지털 엑스선 트蕊는 사용자의 요구에 따라 다양한 장비에 응용될 수 있는데, 우선적으 로 휴대용 장비와 같은 소형 장비에 응용할 수 있다는 큰 장점이 있다. 또한, 이러한 엑스선 트蕊는 크기가 작다면 장점뿐만 아니라 손가락 몇 개로 들 수 있을 정도로 무게가 가벼우므로 휴대용 악스선 장비의 중량 문제를 해결할 수 있는 흥미로운 대안이 될 것으로 기대된다. 또한, 진공 밀봉을 위해 개발한 브레이징 공정은 대량생산에 적합한 방법이다. 결론적으로, ETRI에서 개발한 진공 밀봉된 디지털 엑스선 트蕊는 대량생산이 용이하고 설치 및 유지, 보수 등도 간편화할 수 있기 때문에 활용할 수 있는 분야가 무궁무진할 것이다. 현재, 이러한 진공 밀봉형 엑스선 트蕊의 상용화 기술개발을 추진하고 있으며, 조반간 CNT 기반 디지털 엑스선 트蕊를 구비한 영상 장비가 시장에 출시될 것으로 예상된다.

IV. 결론

기존 연전자원 기반 엑스선 트蕊의 여러 가지 단점을 극복하기 위하여 나노전자원 기반 디지털 엑스선 트蕊의 제조기술개발이 전 세계적으로 활발히 진행 중이다. 탄소나노튜브는 매우 큰 비유방성, 구조적 및 화학적 안정성 등의 우수한 특성을 가지고 있으므로 가장 우수한 나노전자원 중에 하나로 알려져 있다. 이러한 이유로 인해, 최근 탄소나노튜브 기반 나노전자원 제조 및 응용기술에 대한 관심이 증대되어 왔다. 특히, ETRI 및 미국 노스캐롤라이나 대학 등의 연구 그룹에서 탄소나노튜브 나노전자원의 신뢰성 향상 및 이를 적용한 엑스선 트蕊의 원전기능을 개발한 후에 상용화를 추진하고 있다. 그럼으로, 조반간 탄소나노튜브 기반 디지털 엑스선 트蕊가 상용화될 것으로 기대된다. 특히, ETRI에서 개발한 탄소나노튜브 기반 진공 밀봉형 디지털 엑스선 트蕊는 고밀도의 전류를 안정적으로 인출할 수 있을 뿐만 아니라, 휴대가 간편하고 대량생산이 용이하므로 다양한 분야 응용이 가능한 것을 기대한다.

응해설

탄소나노튜브 탄소원자가 육각형 편도로 배열되어 있는 그 량은 흐트러져 있는 꼭대기에서 꼭대기로 내려가며 다름 없이 탄소나노튜브가 됨.

나노전자원 재료에 강한 전기장을 가입시킨 전자를 방출하는 전계발전 현상이 일어나는데, 탄소나노튜브와 같은 나노재료를 이용하면 전계발전 현상이 용이하게 관찰되며, 이러한 나노재료의 전계발전을 나노전자원의 기대한다.

진공밀봉기술 엑스선 튜브를 제작하여 많이 진공 밀봉을 부착하지 않고도 대부분의 높은 진공도도 가진 튜브의 제작을 가능하게 하는 밀봉 기술

약어 정리

<table>
<thead>
<tr>
<th>약어</th>
<th>약어 정의</th>
</tr>
</thead>
<tbody>
<tr>
<td>BM</td>
<td>Ball Milling</td>
</tr>
<tr>
<td>3-RM</td>
<td>3-Roll Milling</td>
</tr>
<tr>
<td>CC</td>
<td>Constant Current</td>
</tr>
<tr>
<td>CNT</td>
<td>Carbon Nanotube</td>
</tr>
<tr>
<td>CT</td>
<td>Computed Tomography</td>
</tr>
<tr>
<td>EPD</td>
<td>Electrophoretic Deposition</td>
</tr>
<tr>
<td>FE</td>
<td>Field Emission</td>
</tr>
<tr>
<td>MWCNT</td>
<td>Multiwall Carbon Nanotube</td>
</tr>
<tr>
<td>sDBT</td>
<td>stationary Digital Breast Tomosynthesis</td>
</tr>
<tr>
<td>SWCNT</td>
<td>Single Wall Carbon Nanotube</td>
</tr>
<tr>
<td>TPT</td>
<td>Turbo Molecular Pump</td>
</tr>
</tbody>
</table>
참고문헌

