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In this paper, an accurate characterization of a 
fabricated X-band transmit/receive module is described 
with the process of generating control data to correct 
amplitude and phase deviations in an active electronically 
scanned array antenna unit. In the characterization, 
quantization errors (from both a digitally controlled 
attenuator and a phase shifter) are considered using not 
theoretical values (due to discrete sets of amplitude    
and phase states) but measured values (of which 
implementation errors are a part). By using the presented 
procedure for the characterization, each initial control bit 
of both the attenuator and the phase shifter is closest to the 
required value for each array element position. In addition, 
each compensated control bit for the parasitic cross effect 
between amplitude and phase control is decided using the 
same procedure. Reduction of the peak sidelobe level of an 
array antenna is presented as an example to validate the 
proposed procedure. 
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I. Introduction 

Active electronically scanned array (AESA) radars with 
transmit/receive (T/R) modules have been studied and 
developed for decades because they provide enhanced system 
functionality and performance compared to mechanically 
scanned array (MSA) radars [1]–[3].  

An AESA radar implements rapid beam steering by 
independently setting the phase of each T/R module’s phase 
shifter (each T/R module is connected to an array element), 
whereas an MSA radar is limited to beam steering by using 
hydraulically or electrically controlled gimbal to physically 
move the array for search.  

In addition, an AESA radar can control the shape of an 
antenna beam by adjusting the amplitude of attenuators in T/R 
modules connected to each array element [4]. Thus, an AESA 
radar has improved search and track performance because of 
beam agility [5]. 

Figure 1 shows the configuration of an AESA antenna unit in 
a radar system [6]–[8]. Radar systems usually have a separate 
receive beamformer for each monopulse beam for angle 
tracking of targets, such as sum (Ʃ), azimuth difference (ΔAz), 
and elevation difference (ΔEl). In addition, a guard channel is 
applied to blank sidelobe detection. The AESA antenna unit 
consists of radiating elements and an antenna structure; T/R 
modules and associated control circuitry; RF beamformers; 
DC power distribution; and a beam steering controller.  

Because there are usually hundreds or thousands of radiators 

Accurate Characterization of           
T/R Modules with Consideration of 
Amplitude/Phase Cross Effect in          

AESA Antenna Unit  

Chang-Soo Ahn, Sang-Mi Chon, Seon-Joo Kim, Young-Sik Kim, and Juseop Lee 



 

418   Chang-Soo Ahn et al. ETRI Journal, Volume 38, Number 3, June 2016 
http://dx.doi.org/10.4218/etrij.16.0115.0974 

 

Fig. 1. Configuration of AESA antenna unit in radar system. 
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and T/R modules, and a lot of networks connecting them, in  
an AESA antenna unit, considerable amplitude and phase 
differences among the paths from each array element to each 
receive beamformer output are produced; these differences can 
cause degradation of radiation performance.  

In general, degradation of radiation performance of an AESA 
antenna unit occurs due to the quantization of both amplitude 
taper and phase shift at each array element [9].  

Several methods have been proposed to enhance antenna 
gain and achieve more precise beam pointing and broader null 
forming [10]–[12]. 

In this paper, an accurate characterization of a fabricated X-
band T/R module with a multi-function chip is presented to 
improve the radiation performance of an AESA antenna unit.  

The process through which to generate control data that is to 
be read by the multi-function chip is described through several 
steps. In particular, we describe the procedure to derive each 
initial control bit of both the attenuator and the phase shifter, 
taking into consideration the implementation errors of the T/R 
module. It is also shown that each control bit for the 
compensation of the parasitic cross effect between amplitude 
and phase control of the T/R module can be derived using the 
same procedure.  

A 16 by 16 planar array antenna unit with T/R modules is 
considered to verify the proposed procedure. It is shown that 
the proposed procedure can reduce the peak sidelobe level of 
the array antenna unit.   

II. Generation of Control Data in AESA Antenna Unit  

An AESA antenna unit should generate and calculate control 
data in T/R modules responding to beam-control parameters 
for specified beam shapes and directions [13]. The generation 
of control data in an AESA antenna unit can be described as 
shown in Fig. 2.  

In the first step, a set of desired settings (without any 
imperfections) for the array elements is generated from an 
“Antenna generator” function. The set of desired settings 
depends on several factors, such as main beam direction (u, v), 
center frequency, taper information for beam shape, antenna 
map, and active element pattern, as indicated in Fig. 2.  

An antenna map features a set of vectors — one for each 
array element that commences in the array antenna phase 
center and ends in the element phase center. The “active 
element pattern” function describes the radiation pattern for 
each array element, when placed in the array surrounded by all 
neighboring elements [14].  

The parameters u and v indicate the direction of a beam 
within a sine-space coordinate system. Sine space is a 
hemispherical projection of three-dimensional space onto a 
plane of an array [9]. 

In the second step, a calibration value stored in the “Antenna 
Correction” function is subtracted from the set of desired 
settings. This subtraction results in a new set of desired settings, 
which we call “corrected desired settings.” 
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Fig. 2. Generation of control data and usage of calibration data in
AESA antenna unit. 
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Table 1. Error sources of amplitude and phase deviation in AESA 
array unit. 

Error source Error type 

T/R modules Non-linear 

Difference between T/R modules and networks     
for dividing and combining 

Linear 

Difference for beamformers Linear 

Manufacturing tolerance of radiating elements spacing Linear 

Difference by connection between T/R modules     
and radiating elements 

Linear 

 

 
An antenna correction table containing phase and amplitude 

correction values for each frequency is constructed. The 
correction values are amassed on a near-field antenna test range 
using a method known as single element adjustment [15], [16].  

Table 1 shows the error sources of the amplitude and phase 
differences among the paths from each array element to each 
receive beamformer output. All error sources except for “T/R 
modules” are linear and can finally be corrected through a near-
field antenna test. The error by “T/R modules” is nonlinear; 
thus, the characterization described in Section III is necessary. 

Prior to the commencement of data collection for the antenna 
correction table, it is required that the T/R module 
characterization data is updated with the latest available data 
for all currently installed T/R modules. In the last step, the 
corrected desired settings are converted to control data. This 
conversion is preferably executed in each T/R module as it is 
dependent normally on both the temperatures and the serial 
numbers of the T/R modules. The temperature of each T/R 
module can be measured internally, and a T/R module’s serial 
number should preferably be stored within its own non-volatile 
memories to facilitate the replacement of T/R modules without 
the need, for example, to update an externally stored database. 
Figure 3 shows how data and calculations can be placed in the 
different components. 
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Fig. 4. Block diagram of T/R module. 
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III. Characterization of T/R Modules 

Since a T/R module is a key component of an AESA radar 
(from the perspective of cost), related fields have reached 
maturity through huge academic and industrial investment [17].  

Figure 4 shows a block diagram of a typical common-leg 
T/R module [18]. Recently, Monolithic Microwave Integrated 
Circuit (MMIC) chips having several functions such as signal 
amplifying, controlling, and T/R switching have been 
investigated as a single-core chip [19]–[21]. 

In this section, an accurate characterization of a fabricated X-
band T/R module with a multi-function chip is presented for 
the generation of control data in an AESA antenna unit.  

1. Method 

A fabricated X-band T/R module with a multi-function chip 
is shown in Fig. 5. The lid is removed partially to show the 
MMIC chips. A hetero-junction multilayer substrate with one 
FR4 substrate for digital signals and three ceramic substrates 
(12 mil RO4003) for RF signals is used for low cost, and a 
dual-pack architecture is selected to reduce the size and weight 
of the T/R module. The multi-function chip is an OMMIC 
CGY2170XUH, which contains a phase shifter, an attenuator, 
and switches. The control values of both the attenuator     
and the phase shifter are summarized in Table 2. There are 
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Fig. 5. Fabricated X-band T/R module with multi-function chip.
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Table 2. Control values of attenuation and phase shifter at 10 GHz.

Control bit order,   
i (N = 6) 

1 2 3 4 5 6 

Target 

value (dB) 
0.50 1.00 2.00 4.00 8.00 16.00

Measured 

value (dB) 
0.50 0.95 2.00 4.00 7.80 15.40Attenuator 

Phase 

change () 
0.16 1.77 0.20 –3.80 –3.26 –3.60

Target 

value () 
5.60 11.20 22.50 45.00 90.00 180.00

Measured 

value () 
5.55 13.00 22.70 42.30 86.00 183.00

Phase 
shifter 

Amplitude 

change (dB) 
–0.29 –0.38 –0.11 –0.63 –1.11 –0.94

 

 
discrepancies between the measured and the quantized target 
values due to implementation errors. In addition, the parasitic 
cross-effect between amplitude and phase controls is depicted. 
In other words, the attenuator is intended to change amplitude, 
but its phase also changes during the process of attenuation 
control. On the other hand, the phase shifter is intended to 
change phase, but its amplitude also changes during the 
process of phase-shift control. The phase shifter is intended to 
adjust the phase in a signal path, but it produces parasitic 
amplitude change at the time of controlling it. Table 2 shows 
this parasitic amplitude change for each bit of each initial 
control bit in the digital phase shifter. Hence, the total parasitic 
amplitude change depends on which bits are in use at the time 
of controlling the phase shifter. The topologies used for 
implementing each bit in Table 2 are different from one another, 
which leads to non-monotonic variation in parasitic amplitude 
change with increasing bit number. Thus, these measured 
values including the cross effect should be taken into 

consideration to find the final control bits matched to the 
required values of amplitude taper and phase shift for each 
array element. Practically, the values can be changed with 
operating conditions such as frequency, temperature, different 
implementation errors of each T/R module, and so on. 
However, the values in Table 2 are used for demonstration 
purposes in this paper; this alone is sufficient to demonstrate 
the usage of the proposed procedure in the case of other 
possible values. 

The basic procedure of the characterization for amplitude 
and phase in a T/R module is shown in Fig. 6. First, the initial 
control bits for each array element, for the nearest quantized 
values with implementation errors to the required values, can 
be obtained through the proposed procedure. To this end, 
measured values in Table 2 are used for Qi (the controlled value 
corresponding to the ith bit). For example, if the required 
amplitude taper value for a certain array position is –24.64 dB, 
then the initial control bit will be determined as 110011; that is, 
–24.65 dB through the proposed procedure. The initial control 
bits for all array elements for the phase shifter are obtained in 
the same manner. The discrepancy between the required and 
represented values by the initial control bits for all array 
elements will be no more than the half of the quantized value 
corresponding to the least significant bit. 

Second, the control bits matched to the amplitude change by 
each phase-shifter state can be derived by using the same flow 
chart as in Fig. 6, except for the fact that X would instead 
represent the total amplitude change value with regard to each 
phase-shifter state. For example, the total amplitude change by 
a phase-shifter state of 111000 is –0.78 dB (from Table 2) and 
the corresponding attenuator control bit will be determined   
to be 010000; that is, –0.95 dB. Thus, we will obtain the 
attenuator control bits matched to the amplitude change at all 
64 phase-shifter states and store them to the memory in the T/R 
module. Then, their callback will be performed easily when the 
phase shifters of the T/R modules at each element for beam 
steering in a certain direction are set to the initial control bits, as 
depicted in Fig. 7. The corresponding phase-shifter control bits 
for the phase change by each attenuator state can be obtained in 
the same manner. The computational load for each new 
pointing control in real-time systems can be minimized 
because a trans coding table is pre-calculated and stored within 
the memory of each T/R module.   

2. Verification 

To verify the proposed method, an array antenna is 
considered — the details of which are given in Table 3. To 
characterize only T/R modules, we assume that all array 
elements have an isotropic radiation pattern and that the mutual 
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Fig. 6. Basic procedure for characterization of T/R module. 
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Fig. 7. Compensation of amplitude change by phase shifter. 
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Table 3. Parameters of AESA antenna unit in analysis. 

Parameter Value 

Type Planar array 

Number of elements 16 × 16 

Element grid Triangular grid 

Element spacing dx = 19.5 mm, dy = 14.7 mm 

Amplitude weighting –30 dB Taylor distribution, 5n   

 

 

Fig. 8. Peak sidelobe levels of array antenna for number of beam 
steering cases under assumption that T/R modules are 
operated using initial control bits without cross effect, with 
phase cross effect, and with amplitude/phase cross effect, 
respectively. 
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coupling between them is neglected. 

Peak sidelobe levels of the array antenna for a number of 
beam steering cases are shown in Fig. 8, where T/R modules 
are operated using initial control bits. The beam steering cases 
in Fig. 8 represent that the array antenna steers a beam in an 
orderly manner in 5 increments from −30 to +30 in both 
azimuth and elevation angles. In other words, the beam 
steering case numbers #1 and #2 represent that the array 
antenna is directed to (−30, −30) and (−25, −30) in azimuth 
and elevation angles, respectively. Thus, the beam steering case 
numbers #85 and #169 represent that the array antenna steers 
the beam at (0, 0) and (+30, +30) in azimuth and elevation 
angles, respectively. 

The thin solid line in Fig. 8 shows the peak sidelobe level 
when initial control bits for a −30 dB peak sidelobe level are 
used under the assumption that there is no cross effect. The 
peak sidelobe level is higher than the desired value due to both 
the quantization and implementation errors. The maximum 
peak sidelobe level in this case is −26.15 dB at beam steering 
case #81; that is, (−20, 0) direction. 
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Table 4. Values obtained from procedure for compensated control bit 
of attenuator at first array element. 

Parameter Value 

Required attenuation 26.74 dB 

Initial control bits for the attenuator (A) 111011 

Measured attenuation with A  26.65 dB 

Required phase shift 243.00 

Initial control bits for the phase shifter (B) 110101 

Measured phase shift with B 243.85 

Amplitude change with B (C) –2.24 dB 

Control bit matched to C 001000 

Compensated control bits for the attenuator (D) 110011 

Measured attenuation with D 24.65 dB 

Resultant attenuation (C + D) 26.89 dB 

 

 

Fig. 9. Peak sidelobe levels of array antenna for number of beam
steering cases, under assumption that T/R modules are 
operated using initial control bits without cross effect and
compensated control bits with amplitude/phase cross
effect, respectively. 
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The dotted line in Fig. 8 shows the peak sidelobe level when 
the cross effect of the attenuator comes into play. The 
additional phase change by the initial control bits of the 
attenuators for each array element are added to the phase by the 
initial control bits of the phase shifters. It shows there is little 
difference from the first case.  

The thick solid line in Fig. 8 shows the peak sidelobe level 
when both the cross effect of the attenuator and the cross effect 
of the phase shifter accur. The peak sidelobe level in this case is 
largely degraded, and the array antenna has a maximum peak 
sidelobe level of −21.6 dB in the case of beam steering case 
#79; that is, (−30, 0) direction. The peak sidelobe level with 

cross effect of the phase shifter is not shown for the sake of 
clarity within the figure; it is similar to the third case. 

Thus, compensation of amplitude change through control of 
the phase shifter is only required for improvement of the peak 
sidelobe level. The compensated control bits can be obtained 
by subtracting the control bits matched to the amplitude change 
by each phase-shifter state (as described in Section III) from the 
initial control bits for the attenuators. Table 4 shows the values 
obtained from the procedure for the compensated control bit of 
the attenuator at the first array element when the beam of the 
antenna unit in Table 3 is directed to (−30, −30), for example. 
It is verified that the resultant attenuation of the T/R module at 
the array element is close to the required value from the 
theoretical calculation through the procedure.  

The dotted line in Fig. 9 shows the peak sidelobe level when 
compensated control bits (to reduce the cross effect of the 
phase shifter) are used, under the assumption that both types of 
cross effect are in existence. The peak sidelobe level in this 
case is similar to the first case in Fig. 8. The maximum peak 
sidelobe level is −25.71 dB in the case of beam steering case 
#87; that is, (+10, 0) direction.  

Obviously, the compensated control bits of the attenuators 
cause the additional phase changes. However, the related 
beam pointing error is negligible when a 6-bit phase shifter is 
utilized in the antenna unit (comprising 256 elements) [8], 
[22]–[24].  

IV. Conclusion 

The generation process of control data for corrected settings 
of the amplitude and phase in an AESA antenna unit is 
described for desired and accurate beam shaping and steering. 
In particular, an accurate, practical characterization using data 
from a fabricated X-band T/R module with a multi-function 
chip is presented — the likes of which is invaluable to 
engineers who are working on calibrations of AESA antennas. 
Each initial control bit of both the attenuator and the phase 
shifter is derived through the proposed procedure. It represents 
the realizable and closest value to the desired amplitude and 
phase for each array element. In addition, each compensated 
control bit for the parasitic cross-effect between amplitude and 
phase control is decided in the same manner. Reduction of the 
peak sidelobe level of an array antenna using the compensated 
control bit is verified. 
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