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Two new methods are proposed for an unsupervised 
adaptation of a language model (LM) with a single 
sentence for automatic transcription tasks. At the training 
phase, training documents are clustered by a method 
known as Latent Dirichlet allocation (LDA), and then a 
domain-specific LM is trained for each cluster. At the test 
phase, an adapted LM is presented as a linear mixture of 
the now trained domain-specific LMs. Unlike previous 
adaptation methods, the proposed methods fully utilize a 
trained LDA model for the estimation of weight values, 
which are then to be assigned to the now trained domain-
specific LMs; therefore, the clustering and weight-
estimation algorithms of the trained LDA model are 
reliable. For the continuous speech recognition 
benchmark tests, the proposed methods outperform other 
unsupervised LM adaptation methods based on latent 
semantic analysis, non-negative matrix factorization, and 
LDA with n-gram counting. 
 

Keywords: Language model adaptation, topic model, 
Latent Dirichlet allocation, weighted mixture model, LDA. 

                                                               

Manuscript received May 30, 2015; revised Feb. 1, 2016; accepted Feb. 29, 2016. 
This work was supported by the ICT R&D program of MSIP/IITP (R0126-15-1117, Core 

technology development of the spontaneous speech dialogue processing for the language 
learning). 

Hyung-Bae Jeon (corresponding author, hbjeon@etri.re.kr) is with the Department of Bio 
and Brain Engineering, KAIST, and also with the SW & Contents Research Laboratory, ETRI, 
Deajeon, Rep. of Korea. 

Soo-Young Lee (sylee@kaist.ac.kr) is with the Department of Electrical Engineering and 
Department of Bio and Brain Engineering, KAIST, Daejeon, Rep. of Korea. 

I. Introduction 

TO compensate for mismatches in the domain, topic, or style 
between training and test tasks, a language model (LM) 
adaptation is required to be introduced during a speech 
recognition test. 

Various LM adaptation techniques have been proposed in the 
literature, and can be categorized into two approaches, model 
interpolation and constrained adaptation [1].  

In an interpolation-based approach, a test-domain corpus is 
used to train a domain-specific LM, which is later combined 
with a baseline LM obtained from a training corpus. A simple 
weighted sum of two word probabilities is used for an 
interpolation.  

In a constrained-adaptation approach, a baseline LM is 
adapted with constraints obtained from a test-domain corpus. 
In the popular minimum discrimination information (MDI) 
method, a baseline LM is adapted to minimize a Kullback–
Leibler divergence between probability distributions of the 
adapted LM and the baseline LM, while satisfying the 
constraints of matched unigram distributions in the baseline 
and test corpora [2], [3].  

Although constrained-adaptation approaches are potentially 
more advantageous than interpolation approaches, they also 
require a bigger test corpus. 

For many real-world automatic transcription applications, 
only one sentence or a few paragraphs may be available for a 
test. In this case, a domain-specific training of an LM is not 
feasible, and only a simple mixture model of relevant domain 
LMs is applicable. In such an approach, a baseline LM would 
need to be pre-trained with a training corpus as a linear mixture 
of domain LMs [4], [5]. In addition, in such a case, only the 
weights associated with the domain LMs would need to be 
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estimated from the very small amount of available test data. 
The domains (or topics) would usually be learned by 
unsupervised document clustering algorithms, and each 
domain LM would be trained with documents from a specific 
domain only; latent semantic analysis (LSA) [6], probabilistic 
LSA [7], and non-negative matrix factorization (NMF) [8] are 
used for the clustering.  

Recently, Latent Dirichlet allocation (LDA) has become 
popular for unsupervised topic modeling with a controllable 
sparseness of latent topic distribution [9], [10]. A linear mixture 
model may be further adapted by model interpolation or 
constrained-adaptation algorithms; for example, a latent 
semantic marginal (LSM) method using LDA-adapted 
unigrams with related MDI constraint [11], [12]. In the case of 
LM adaptations, many speech recognition applications can use 
only an automatic transcription sentence generated from a first-
pass decoding. For this reason, a method incorporating a 
mixture of domain LMs is more appropriate for an LM 
adaptation since we only need find an efficient method for 
accurately estimating the weights associated with the domain 
LMs. LDA has outstanding performance with regard to topic 
modeling [9], [10], which leads to a robust estimation of the 
weights associated with the domain LMs. In the case of an LM 
adaptation based upon a linear mixture of domain LMs, we 
propose two new methods to estimate, from a single test 
sentence, the weights associated with these domain LMs.  

The proposed methods are based on an LDA topic model. 
Unlike previous LDA-based methods [1], the proposed 
methods fully utilize both a learned topic and word 
probabilities for a given domain-LM weight estimation. The 
proposed methods for LM adaptation perform equally or better 
when compared with other approaches in the literature (namely, 
those that are based on one of three clustering algorithms: LSA, 
NMF, or LDA).  

The rest of this paper is organized as follows. In Section II, 
the proposed methods for LM adaptation are presented, and the 
details of our experiments are described in Section III. Finally, 
conclusions are drawn in Section IV. 

II. LDA-Based LM Adaptation 

1. Mixture Model for LM Adaptation  

Figure 1 shows a flow diagram illustrating the process of an 
LM adaptation and lattice rescoring in a test phase suitable for 
an automatic transcription application. For each test dialogue, 
the “First-Pass Decoding” module generates a “word lattice” 
and an “automatic transcription” from a baseline speech 
recognition system. The transcription results may be improved 
by adapting the LM for each test dialogue.  

 

Fig. 1. Flow diagram of proposed LM adaptation. 
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In this paper, we propose two methods for estimating 

accurate interpolation weights with respect to the particular 
type of LM adaptation illustrated in Fig. 1. 

An n-gram LM defines a probability distribution over 
sequences of words. Given a word sequence, w1, … , wJ, an 
LM approximates its associated probability, 1( , ... , ),A Jp w w  
using the following equation: 

 1
1

( , ... , ) ( | )
J

A J A j j
j

p w w p w h


 ,          (1) 

where (w1, … , wJ) represents a J-word test dialogue, and hj 
denotes the history (previous words) at time j.  

For an n-gram model, a Markovian assumption results in an 
(n – 1) word sequence for hj and (1) holds only approximately. 
The goal of the LM adaptation depicted in Fig. 1 is to provide a 
better estimate for the probability given in (1).  

In the case of a weighted mixture model, the n-gram 
probability of the adapted LM depicted in Fig. 1 is represented 
as 

1

( | ) ( | )
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K
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k

p w h p w h


  ,          (2) 

where ( | )
kD j jp w h  refers to the n-gram probability in the 

domain Dk; k is the weight of the kth domain Dk; and K is the 
number of domains or topics in the training corpus. Therefore, 
provided that domain-specific LMs are trained in advance, the 
LM adaptation renders a task to find proper values for weight 
k from a given first-pass transcription result. 

2. Unsupervised Document Clustering for Domain LMs 

The domain-specific LMs are trained in advance with 
portions of the training corpus, which are clustered by 
unsupervised learning algorithms. Following a “bag-of-words” 
model, the input to the clustering algorithms is determined as a 
normalized word-document matrix, W, of which the (m, l)th 
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element is [6]  
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where cml is the number of times word wm occurs in document 
dl, nl is the total number of words present in document dl, and 
εm is the normalized entropy of word wm in the corpus. Here, M 
and L are the number of words in the vocabulary and the 
number of documents, respectively. The normalized entropy m 

of the mth word is introduced to place more emphasis on 
discriminant words, and is defined as 
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The training corpus may be clustered by LSA, NMF, and 
LDA. LDA is especially interesting with both its three-level 
hierarchical architecture and its capability to represent 
documents by random latent topics. 

Figure 2 shows a graphical model representation of LDA. In 
LDA, latent topics are characterized by a distribution over 
words. LDA learns parameters α, θ, Z, β, and η by maximizing 
the likelihood of the word-document matrix W obtained from 
the training corpus. The random variable Zml is a word-level 
topic assignment that assigns Wml to one of K topics. The 
variable Zml follows a multinomial distribution with parameter 
θl, which represents topic probabilities of the lth document over 
the training corpora. The random variable βk represents word 
probabilities of the kth topic. The parameters α and η control 
Dirichlet distributions of θl and βk, respectively. The parameter 
learning is performed by variational inference [9] or by Gibbs 
sampling [12]. 

Once the LDA parameters are learned, the clustering may be 
conducted from θl = [θl1, θlK]; that is, the topic probability of a 
document. The popular choice is to find the topic kl that gives 
the maximum θlk for the lth document as [12] 

arg max ., 1l l
k

kk k K             (5) 

In our experiments, we used up to three topics for each 
document. This multi-cluster assignment scheme allows 
overlap among clusters with smooth transition and enriches the 
training document of each cluster. In addition, a k-means 
clustering algorithm may be used with a Hellinger distance 
measure between the lth and tth documents as [10] 

 

Fig. 2. Graphical representation of LDA. 
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Other distance measures, such as Euclidean distance, may also 
be used without any significant differences occurring. In this 
case, the number of clusters may be different from the number 
of topics K. Accordingly, documents that have a similar topic 
probability are assigned to the same domain. Then, n-gram 
domain (or topic-specific) LMs are trained from the documents 
in the same clusters. 

3. LM Adaptation Based on Domain Estimation 

In contrast to a fixed coefficient method, more appropriate 
clusters were chosen in the case of our given automatic 
transcription [13]. Furthermore, the weights associated with the 
domain LMs were estimated by the topic probability. 

For any given test dialogue, a first-pass decoding provides a 
transcription estimate, of which the associated word probability 
vector is equivalent to a column from the word-document 
matrix W. Therefore, it is possible to obtain a topic-probability 
vector θt of the test dialogue from the trained LDA parameters. 
Then, weight parameters ( ,1k k K   ) are estimated to give 
the n-gram probability in (2).  

In [12], the weight k was estimated from an n-gram count of 
the topic as 

t
1

( | ) ( | )
I

k i i
i

p k p D


  w w ,          (7) 

where wi is the ith n-gram and I is the number of n-grams in the 
test document Dt. This method will be denoted by LDA-NC 
(n-gram count) hereafter. 

For a short test dialogue, only a very small fraction of all the 
bigrams or trigrams is available, and the estimated weights (of 
the domain LMs) may not be robust. To overcome this 
difficulty, two new methods are proposed for the said weight 
estimation. Both methods utilize the topic probability vector θt 
evaluated for the test dialogue from the LDA parameters. 
Therefore, both clustering and weight estimation are based on 
the same LDA parameters, and consistency is maintained. 

First, we use the topic probability with normalization as 
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where T (≤ K) is the number of topic mixtures to be considered. 
The second method utilizes the distance measure in (6); thus, 
the mixture weight becomes 
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where Dtk is the distance between the test vector θt and average 
of all documents in the kth domain, θk. Here, T is the number of 
domains over all the training corpora. The proposed methods in 
(8) and (9) will be denoted by LDA-TP (topic probability) and 
LDA-DD (domain distance), respectively. 

III. Experimental Results. 

1. Experimental Setup 

To show robustness on the training data, different speech 
corpora were used for the training module. The Hidden 
Markov Model Toolkit was used to train a hidden Markov 
model (HMM)-based acoustic model, first-pass decoding, 
lattice generation, and lattice rescoring. Three speech corpora, 
the WSJ1 SI-284, WSJ0, and TIMIT training sets, were used 
for training 7,238 state-tying HMMs. A given feature vector 
consists of one log energy coefficient and 12 Mel-frequency 
cepstral coefficients, and their first and second derivatives. 

For the clustering and training of baseline LMs, four different 
corpora were used: (a) randomly selected 300K documents from 
490K documents in the LDC CSR3 training text corpus from 
newswires between 1987 and 1994; (b) randomly selected 100K 
documents from 125K training documents in the LDC HUB4 
text corpus from broadcast news between 1992 and 1996; (c) the 
full 4,876 telephone conversational dialogue in the part 1 
transcription data of the LDC switchboard; and (d) 200K social 
network documents composed of 9M randomly selected tweets 
out of 54M tweets from the Twitter service. The total size of the 
LM training corpora was about 2.1 GB. These 604K documents 
were clustered by LDA, LSA, and NMF for a performance 
comparison. Then, the domain LMs were trained with Kneser-
Ney discounting and entropy-based pruning algorithms by the 
SRI LM toolkit [14]. 

The Wall Street Journal (WSJ) corpus was used to evaluate 
the performance of the proposed methods for LM adaption in 
continuous speech recognition (CSR) tasks. Specifically, the 
November 1992 and November 1993 ARPA CSR benchmark 
test data (WSJ Nov 92 and WSJ Nov 93) were used. LM 
adaptation was achieved by (2), of which weight k was 
estimated by (8) and (9) for the proposed LDA-TP and LDA-
DD, respectively. Four other LM adaptation methods in the 
literature (LSA, NMF, LSM, and LDA-NC) were also 
implemented for a performance comparison.  

2. Experimental Results 

In Fig. 3, the distribution of topic probability θlk is plotted for 
the training and test corpora after LDA training with 10  
topics (K = 10). For each document, the θlk values were sorted, 

  

Fig. 3. Distribution of topic probability lk values for (a) training 
corpora and (b) test corpora. For many documents only 
few lk have non-zero values, and solid red line is quite 
distinct. 
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and the top four values were plotted. For example, the solid red 
line is a histogram depicting the largest values of θlk, and the 
blue solid line is a histogram depicting the second-largest 
values of θlk. It is clear that the solid red line is quite distinct; 
that is, it contains only a few non-zero values. Actually, the 
topic probability θlk is sparse, and the kurtosis value is 5.96 for 
the test corpora, which shows that LDA works well for 
unsupervised clustering. Further, the distribution does not show 
much difference between the training and test corpora, and the 
clustering is well generalized. 

Figure 4 shows the number of documents assigned to each 
topic by (5); that is, assigned to the topic with the highest θlk 
value. The majority of the switchboard corpus and a big 
portion of the HUB4 corpus consist of one topic, while Twitter 
data from social networks form another topic. The CSR3 
corpus is quite general and scattered across many other topics. 

The performances of the various LM adaptation methods is 
evaluated under automatic transcription. Table 1 summarizes 
the perplexity improvements of the LM adaptation methods at 
the sentence level. 

The performance of the proposed LDA-TP and LDA-DD 
methods is compared with that of existing methods, LSA, 
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Fig. 4. Number of assigned documents to 10 topics by LDA: (a)
LDC CSR3 corpus, (b) LDC HUB4 corpus, (c) LDC
switchboard corpus, and (d) Twitter data. 
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Table 1. Perplexity values of various LM adaptation methods for
WSJ Nov 92 and WSJ Nov 93 corpora. 

Without final 
interpolation 

With final 
interpolation LM 

adaptation 

No. of 
mixtures for 
adaptation Nov 92 Nov 93 Nov 92 Nov 93

Average

Baseline 
LM 

N/A 214.95 213.04 N/A N/A 214.00

3 166.16 166.18 166.51 166.84 166.42
LSA 

10 167.61 168.59 169.10 169.86 168.79

3 167.10 176.78 165.89 172.95 170.68
NMF 

10 169.00 170.93 170.34 172.01 170.57

LSM N/A 186.24 179.88 179.35 182.47 181.98

3 165.90 161.39 167.99 163.59 164.67LDA-NC 

(n-gram) 10 168.03 165.11 169.49 166.57 167.30

3 157.17 161.09 158.55 161.33 159.54Proposed 
LDA-DD 10 171.17 172.54 172.49 173.59 172.45

3 152.04 150.89 153.22 152.32 152.12Proposed 
LDA-TP 10 151.90 150.93 153.61 152.65 152.27

 

 
NMF, LSM, and LDA-NC. The best results from the final 
interpolation with the baseline LM were chosen out of ten 
different interpolation parameters. Except for the LDA-DD, the 
number of topics is set to ten (K = 10) for all cases. For the 
LDA- DD, 50 topics are initially learned by the LDA, but the 
latter ten clusters were formed by a k-means algorithm with  

Table 2. Word error rate (%) of various LM adaptation methods for
WSJ Nov 92 and WSJ Nov 93 corpora. 

Without final 
interpolation 

With final 
interpolation LM 

adaptation

No. of 
mixtures for 
adaptation Nov 92 Nov 93 Nov 92 Nov 93

Average

Baseline 
LM 

N/A 10.83 13.17 N/A N/A 12.00

3 10.12 12.77 10.15 12.80 11.46
LSA 

10 9.69 12.25 9.69 12.30 10.98

3 9.96 13.12 9.92 12.65 11.41
NMF 

10 9.80 12.45 9.84 12.36 11.11

LSM N/A 10.70 13.32 10.17 13.03 11.81

3 10.21 12.33 10.07 12.19 11.20LDA-NC 

(n-gram) 10 10.03 12.22 9.96 12.07 11.07

3 9.85 12.59 9.78 12.68 11.23Proposed 
LDA-DD 10 9.87 12.30 9.94 12.30 11.10

3 9.66 12.36 9.66 12.19 10.97Proposed 
LDA-TP 10 9.64 12.10 9.64 12.10 10.87

 

 
distance measure (6). The number of non-zero weights 
(associated with the domain LMs) in (2) was set to three or ten. 

Among the several LM adaptation methods, the 
performance of the proposed LDA-TP forms a distinct top 
group with the best (bold fonts) perplexity. In this top group, 
the perplexity was reduced from 214 to about 150 on average. 
The proposed LDA-DD, with up to three mixtures, also 
worked well and resulted in the second best (bold italic fonts) 
performance. The final interpolation with the baseline LM had 
the same form as the weighted mixture models and did not 
improve the performance much.  

Table 2 summarizes the word error rates (WERs) of the 
various LM adaptation methods. For the WERs, the LSA, LDA-
NC, and LDA-TP form a top group, and reduce WERs from 
12% to less than 11%. The LSA and LDA-NC did poorly in 
terms of the perplexity measure. However, the proposed LDA-
TP belongs to the top group for both perplexity and WERs 
measures, and for both the WSJ Nov 92 and Nov 93 corpora.  

In the case of real-world applications, a smaller number of 
topic mixtures is necessary for a low computational complexity. 
In such a case, the proposed LDA-TP would have the best 
performance; that is, because the topic probability of the LDA 
is sparse, the proposed LDA-TP has a low level of degradation. 

In Table 3, WERs are shown for several different numbers of 
topics for the proposed LDA-TP method. For all cases, the 
same number is used for both the LDA topics and LM clusters. 
Compared to Tables 1 and 2, a slightly better performance was 
obtained with more than ten topics. However, WERs were not 
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Table 3. Low sensitivity of word error rate (%) on number of topics 
and clusters for proposed LDA-TP method. 

Perplexity WER (%) 
No. of topics/mixture 

Nov 92 Nov 93 Nov 92 Nov 93 

Baseline LM 214.95 213.04 10.83 13.17 

5 171.43 168.62 10.07 12.94 

10 152.04 150.89 9.66 12.36 

30 133.37 131.75 9.60 12.30 

50 131.56 130.09 10.07 12.86 

 

Table 4. Robustness of word error rate (%) on adaptation data for
proposed LDA-TP method. 

Perplexity WER (%) 
Adaptation data 

Nov 92 Nov 93 Nov 92 Nov 93 

Test document 149.54 147.58 9.84 12.19 

Test sentence 151.90 150.93 9.66 12.25 

 

 
sensitive to the number of topics and clusters. 

Table 4 shows the perplexity and WERs for different 
adaptation data. In general, the document-based estimation of 
the weights associated with the domain LMs shows a better 
performance than the sentence-based estimation. However, in 
the case of real-world applications, the adaptation data are 
restricted to an automatic transcription, and in Table 4 the 
sentence-based estimation results in a similar performance as 
the document-based estimation. Because the proposed LDA-
TP method estimates the probabilities of the basis components 
(topics) that comprise a given domain, it gives a more robust 
performance in terms of the amount of adaptation data used. 

IV. Conclusion 

In this paper, we presented new methods for an LM 
adaptation based on the topic probability of LDA. Even with 
one test sentence, the proposed LDA-TP resulted in an 
excellent performance in terms of both perplexity and WER 
measures. In addition, the performance is robust to the number 
of clusters. This excellent performance may come from the 
consistency in the clustering and weight-estimation methods, 
both of which are based on LDA. 
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