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Recent developments in the field of separation of mixed 
signals into music/voice components have attracted the 
attention of many researchers. Recently, iterative kernel 
back-fitting, also known as kernel additive modeling, was 
proposed to achieve good results for music/voice 
separation. To obtain minimum mean square error 
(MMSE) estimates of short-time Fourier transforms of 
sources, generalized spatial Wiener filtering (GW) is 
typically used. In this paper, we propose an advanced 
music/voice separation method that utilizes a generalized 
weighted β-order MMSE estimation (WbE) based on 
iterative kernel back-fitting (KBF). In the proposed 
method, WbE is used for the step of mixed music signal 
separation, while KBF permits kernel spectrogram model 
fitting at each iteration. Experimental results show that 
the proposed method achieves better separation 
performance than GW and existing Bayesian estimators. 
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I. Introduction 

Music/voice separation of mixed music signals refers to the 
problem of trying to separate vocals from instrumentals in a 
song to produce both an a cappella track and an instrumental 
track. It is a topic that has many applications, such as automatic 
karaoke [1], instrument/vocalist identification [2], music/voice 
transcription [3], music remixing [4], [5], and audio restoration 
[6]. 

A number of approaches have been applied to the problem  
of separating the foreground (typically the voice) from the 
background (the musical accompaniment) components, 
including spectrogram factorization [7], accompaniment model 
learning [8], and pitch-based inference techniques [9].  

Recently, a relatively promising approach using kernel 
additive modeling (KAM) was proposed [10], wherein the 
spectrogram of each source is modeled only locally. This 
approach encompasses a large number of recently proposed 
methods for source separation [1], [11]–[15]. KAM permits the 
use of different proximity kernels for different sources, with 
separation using an iterative kernel back-fitting (KBF) 
algorithm. In KBF, generalized Wiener filtering is used for the 
step of mixed music signal separation, and 2D median filtering 
is applied to the power spectrogram of each source estimate for 
kernel spectrogram model fitting at each iteration.  

In spoken speech enhancement, one source may be the target 
voice, while other sources may correspond to background 
noise — which must be filtered out. Among the vast number of 
single-channel speech enhancement algorithms based on 
minimum mean square error (MMSE) estimation of short-time 
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spectral amplitude (STSA) published in the literature, it is well 
known that the Bayesian STSA estimation methods [16] 
outperform the Wiener filtering, spectral-subtraction, and 
subspace approaches.  

In addition, among the Bayesian STSA estimation methods, 

such as those based on the MMSE of the STSA [17], the 

MMSE of the logarithm of the STSA (LSA) [17], the weighted 

Euclidean (WE) error [17], and β-order MMSE STSA (bSA) 

[17], [18], we find that weighted β-order MMSE estimation 

(WbE) [17] achieves the best enhancement performance in 

terms of both objective and subjective measures. WbE [17]–

[19] combines the power law of the bSA estimation method 

and the weighting factor of the WE error estimation method. Its 

parameters are chosen based on the human auditory system, 

which provides the advantage of improving noise reduction at 

high frequencies while limiting speech distortion at low 

frequencies. 

In this paper, an advanced music/voice separation method  

is proposed, in which WbE and KBF are combined for 

improvement of the separation performance. 

This paper is organized as follows. Section II describes the 

proposed method, while Section III discusses the experimental 

results. Finally, the conclusion is presented in Section IV.  

II. Proposed Music/Voice Separation Method 

Algorithm 1 shows the overall procedure of the proposed 

advanced music/voice separation method. The algorithm is 

composed of seven steps.  

Let a real-valued monaural music signal in a discrete-time 

domain, x(n), be defined as x(n) = v(n) + h(n) + p(n), where 

v(n), h(n), and p(n) denote the singing voice, the stable 

harmonic elements, and the percussive elements including 

periodic components, respectively.  

First, an input monaural music signal x(n) is transformed into 

a complex spectrogram, X, using a short-time discrete Fourier 

transform (STFT), as shown in step 3, as follows: 
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where R denotes the frame shift, l is the frame index, w(n) 

indicates a window function, N is a window size, and u    

{0, 1, ... , U – 1} is the frequency bin index, which is related to 

the normalized center frequency. 

This is followed by step 4, wherein music/voice separation is 

carried out based on WbE. 

Algorithm 1. Whole procedure of advanced music/voice separation 
method. 
1) Input 

• Given an input signal x(n) 
• Kernels ΛV, ΛH, ΛP for vocal, harmonic, percussive components 

2) Initialization 
• GV = GH = GP = 1    WbE-based gain 

3) Preprocessing 
a) X ← STFTl [x(n)]     Complex spectrogram 

4) Music/voice separation based on WbE : Algorthm 2 
a) SV ← GV·X  Complex vocal spectrogram estimation 

b) SH ← GH·X  Complex harmonic spectrogram estimation 

c) SP ← GP·X  Complex percussive spectrogram estimation 

5) Determination of music/voice enhancement 
If each estimated complex spectrogram SV, SH, SP, is sufficiently 
enhanced or separated, 

then go to step 7. 
else  

then go to step 6-4-5. 
6) Back-fitting  

a) BV ← |SV|2     Vocal power spectrogram 

b) BH ← |SH|2     Harmonic power spectrogram 

c) BP ← |SP|
2     Percussive power spectrogram 

d) MV ← median [BV|ΛV]  Median filtering using vocal kernel 

ΛV 

e) MH ← median [BH|ΛH]   Median filtering using harmonic 

                        kernel ΛH 

f) MP ← median [BP|ΛP]    Median filtering using percussive  

kernel ΛP 

g) DVΣVEV ← SVD [MV]  Singular value decomposition 

h) DHΣHEH ← SVD [MH] 

i) DPΣPEP ← SVD [MP] 
7) Output
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From the complex spectrogram X of the input music signal, 

each complex spectrogram, SV, SH, and SP, for the vocal, 

harmonic, and percussive components is estimated by each 

generalized WbE, GV, GH, and GP, of decomposed spectral 

amplitude by singular value decomposition (SVD) for the 

vocal, harmonic, and percussive components, respectively. The 

WbE estimation gain, Gj, for each source j (= 0, 1, 2, … , J) is 

explained in detail in Algorithm 2.  
In the fifth step, each current estimated spectrogram is 

compared with each previous estimated complex spectrogram. 
If the difference between the current and previous estimated 
spectrograms is not larger than the back-fitting threshold value, 
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then each complex spectrogram for the vocal, harmonic, and 
percussive components is converted back to the time domain 
using an inverse STFT, as step 7 (the sum of the separated 
harmonic and percussive waveforms can be represented as the 
musical accompaniment, while the separated vocal waveform 
is the singing voice). Conversely, if the difference between the 
two is larger than the back-fitting threshold value, then the 
KBF process of step 6 is iterated until convergence. Applying 
the auxiliary function approach [20] to a quadrature form of the 
spectrogram gradients, the back-fitting threshold value is 
calculated at each iteration. 

During the KBF step of each source, a simple 2D median 
filter is applied to the power spectrogram of the complex 
spectrogram (filtered by WbE) with source-specific binary 
kernels, ΛV, ΛH, and ΛP. The three kernels [10] used for the 
median filter are as follows: (1) for a percussive and repeating 
source, the vertical kernel ΛP is chosen; (2) for a harmonic 
source, the horizontal kernel ΛH is chosen; and (3) for a source 
with only a spectral smoothness assumption, the cross-like 
vocal kernel ΛV is chosen. This KBF proceeds in an iterative 
fashion, with alternate performance of separation and re-
estimation (back-fitting) of the parameters to obtain new 
spectrogram estimates for each source.  

1. WbE of SVD-Based Decomposed Spectral Amplitude 

For the music/voice separation from monaural music signals, 
we propose a new kind of generalized spatial WbE of      
the decomposed spectral amplitude by SVD. The proposed 
estimation method takes full advantage of both a generalized 
weighted β-order spectral amplitude estimator and an SVD-
based subspace decomposition. 

Let the spectrogram of the monaural music signal X be 
expressed as X = X1 + X2 + X3 for each source, where X1, X2, 
and X3 are the complex spectrograms for vocal, harmonic, and 
percussive components, respectively.  

The generalized weighted β-order spectral amplitude 
estimator combines the power law in the β-order spectral 
amplitude cost function and the weighting of the WE cost 
function. The cost function of the generalized WbE can be 
expressed as follows: 
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where α is the perceptually weighted order and β is the spectral 
amplitude order.  

The above cost function takes advantage of not only 
perceptual weighting, to allow the estimation error to be 
penalized more heavily in the spectral valleys than the spectral 
peaks, but also the cochlea’s compressive nonlinearities. It is 

well known that the WbE method outperforms Wiener filtering 
in speech enhancement under different noisy environments. It 
can also be concatenated with kernel spectrogram back-fitting 
to yield good results for music/voice separation. 

However, KBF using either Wiener filtering or the 
generalized weighted β-order spectral amplitude estimator 
comes with an important drawback: it requires a full-resolution 
spectrogram, and storage of a huge number of parameters at 
each iteration, and for each source. To reduce the memory 
usage and improve the separation performance while 
maintaining computational efficiency, SVD is applied to the 
full-resolution spectrogram Xj, as follows: 

 SVD ,j j j j jK X    D Σ E            (3) 

where Xj is factored into a matrix product comprising three 
matrices — an M × M row basis matrix Dj, an M × L diagonal 
singular value matrix Σj , and an L × L transposed column basis 
matrix Ej. Let K1, K2, and K3 represent the decomposed spectral 
amplitude for vocal, harmonic, and percussive components, 
respectively. Then, W can be expressed as W = K1 + K2 + K3 for 
each source.  

Using the estimated decomposed spectral amplitude ˆ
jK  

based on SVD, a new cost function can be obtained as follows: 
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By minimizing the expectations of the given cost function 
and substituting βj for each source j instead of β, the separated 
spectral amplitude estimation can be obtained as follows: 
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where E{•} denotes expectation and Gj is the gain value obtained 
according to the cost function of the generalized weighted β-
order estimator of the SVD-based factorized spectral amplitude. 

The resulting gain function for the generalized WbE is 
derived to be 
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where ξj denotes an a priori signal-to-noise ratio (SNR), γj 
denotes an a posteriori SNR, and χj is a function of both ξj and 
γj. Furthermore, Γ(•) is the gamma function, and Φ(•) denotes 
the confluent hypergeometric function, which can be written as 
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The filtering or separation procedure based on WbE is 
described in Algorithm 2. 

 

Algorithm 2. Filtering based on WbE. 
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2. Appropriate Calculation of βj and αj 

In single-channel speech enhancement methods based on 
WbE, the cost function includes both a power law β and a 
weighting factor α. To obtain a significant noise reduction and 
an improved speech estimation of weak speech components 
both in terms of objective and subjective measures, adaptive 
calculation methods of parameters α and β, of the cost function, 
have been proposed and published in the literature [19]–[21]. 

We think that the perceptually weighted order αj and the SVD-
based factorized spectral amplitude βj for Kj are also important 
for enhancement or separation of voice/music based on the 
WbE.  

Since αj and βj are based on characteristics of the human 
auditory system, including the compressive nonlinearities of 
the cochlea, the perceived loudness, and the ear’s masking 
properties, the choosing of appropriate values for αj and βj can 
result in better enhancement or separation performance. In this 
subsection, the adaptive estimation of parameters αj and βj is 
described. 

An adaptive calculation method of parameter αj is given as 
follows: 
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where αlow = 0.25 and αhigh = 0.94 are used for the trade-off 
between target source enhancement and other source reduction; 
a (0 < a < 1) is a smoothing parameter; and fu is the frequency 
in hertz corresponding to spectral component u; that is,     
fu= uFs/N, where Fs is the sampling frequency. 

Combining the masking threshold T with the sub-band SNR 

Z, the parameter ˆ
j  can be expressed as a function of the two 

variables in polynomial form, approximately as follows: 
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where cqr represents the polynomial coefficients, and the 
empirical values e0 = 0.765, e1 = −0.123, e2 = −0.265, and e3 = 
−0.07 were obtained through simulation.  

The frequency masking threshold T was derived in [19]. 
Higher masking thresholds will result in larger αj values, 
corresponding to higher gain; whereas, lower masking 
thresholds will result in a smaller αj values, corresponding to 
lower gain. 

An adaptive calculation method for parameter βj is given as 
follows: 

 ˆ 1 ,j j jβ b β b β

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where b (0 < b < 1) is a smoothing parameter.  
According to the frequency-position function (FPF) du, the 

compression rate ˆ
j at intermediate frequencies can be 
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calculated through linear interpolation between βlow and βhigh. 
That is, 
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where βhigh = 0.2 and βlow = 1 denote the low-frequency and 
high-frequency of the compression rate, respectively. 

Considering the fact that each frequency corresponds to a 
position on the basilar membrane, the FPF is given by 
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where du is the position on the basilar membrane in millimeters, 
while η = 0.06 mm, A = 165.4 Hz, and t = 1 are the parameters 
set in [22]. 

By limiting the range of j


 as [βmin, βmax] to obtain a better 

trade-off between target source enhancement and other source 

reduction, j


 can be calculated through the following 

relationship: 
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where μ = 0.45, λ = 1.3, βmin = 0.4, and βmax = 4.0. 
The parameters αj and βj are estimated from the input 

spectrogram and used as initial values to obtain a flexible, 
effective gain function, which improves better enhancement or 
separation performance. Therefore, the adaptively estimated 
parameters αj and βj for each source at each iteration guarantee 
the decrease of the quadrature form of the spectrogram 
gradients for the effective convergence of the proposed 
separation algorithm. 

III. Experimental Results 

In this subsection, the performance of the proposed WbE-
KBF algorithm is evaluated for the separation of background 
music and singing voice.  

For the first experiment, 150 full-length song tracks [23] 
were used (50 songs from the ccMixter database containing 
many different musical genres, 50 songs from a self-recording 
studio music database, and 50 songs from the MIR-1 K 
database), where all singing voices and music accompaniments 
were recorded separately. All of the song data were stored in 
PCM format with mono, 16-bit depth, and 44.1 kHz sampling 
rate.  

For each track, an accompaniment of six repeating patterns 
along with a 2 s steady harmonic source was determined. 
Vocals were modeled using a cross-like kernel with a height of 
15 Hz and width of 20 ms. The frame length was set to 90 ms, 

with 80% overlap. Six to eight iterations were performed for 
the “Back-fitting” stage of Algorithm 1 (approximately until 
convergence).  

For the performance measures, performance was evaluated 
in terms of source-to-interference ratio (SIR) and source-to-
distortion ratio (SDR) by blind-source-separation evaluation 
metrics [24]: 
▪ SDR measures the amount of distortion introduced by the  

output signal, and is defined as the ratio between the energy 
of the clean signal and that of the distortion. SDR gives an 
overall score for separation. 

▪ SIR is defined as the ratio of the target signal power to that 
of the interference signal, and measures the amount of 
undesired interference signal still remaining in the separated 
signal. 
The normalized SDR (NSDR) and the normalized SIR 

(NSIR) for singing voice are defined as 
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where vr is the resynthesized singing voice, v is the original 
clean singing voice, and x is the mixture. NSDR is for 
estimating the improvement of the SDR between the processed 
mixture x and the separated singing voice vr. Higher NSDR 
values indicate better separation. 

The performance of the proposed WbE algorithm was 
compared with that of GW, LSA, bSA, and WE, based on 
KAM. 

Tables 1 and 2 present the experimental results of seven 
methods: 
▪ STFT-GW-KAM: As a basic KAM algorithm, the 

generalized Wiener filter was applied to the power 
spectrogram based on STFT. 

▪ SVD-GW-KAM: SVD was performed on the power 
spectrogram based on STFT. To the SVD-based 
decomposed power spectrogram, the generalized Wiener 
filter was applied. 

▪ SVD-LSA-KAM: Instead of the generalized Wiener filter, 
the MMSE of the LSA was applied to the SVD-based 
decomposed power spectrogram. 

▪ SVD-bSA-KAM: Instead of the generalized Wiener filter, 
bSA was applied to the SVD-based decomposed power 
spectrogram. 

▪ SVD-WE-KAM: Instead of the generalized Wiener filter, 
WE error was applied to the SVD-based decomposed 
power spectrogram. 

▪ SVD-GA-KAM: Instead of the generalized Wiener filter, the 
MMSE STSA with generalized gamma distribution [25] 
was applied to the SVD-based decomposed power 
spectrogram. 
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Table 1. Comparative performance for music separation. 

Separation performance for music
Separation algorithms 

NSDR NSIR 

STFT-GW-KAM 6.38 9.29 

SVD-GW-KAM 6.95 9.81 

SVD-LSA-KAM 7.45 10.56 

SVD-bSA-KAM 8.78 12.67 

SVD-WE-KAM 9.12 12.72 

SVD-GA-KAM 6.63 9.49 

SVD-WbE-KAM 9.54 12.97 

 

Table 2. Comparative performance for vocal separation. 

Separation performance for vocal 
Separation algorithms 

NSDR NSIR 

STFT-GW-KAM 2.45 6.67 

SVD-GW-KAM 2.99 7.16 

SVD-LSA-KAM 3.45 7.54 

SVD-bSA-KAM 3.61 7.68 

SVD-WE-KAM 2.86 6.45 

SVD-GA-KAM 5.19 9.32 

SVD-WbE-KAM 5.17 9.56 

 

 
▪ SVD-WbE-KAM: Instead of the generalized Wiener filter, 

WbE was applied to the SVD-based decomposed power 
spectrogram. 
As shown in Table 1, the best separation performance of  

the music from the mixed music signal is obtained with the 
proposed method, SVD-WbE-KAM, in terms of NSDR and 
NSIR. Compared to the other six methods, the basic method, 
STFT-GW-KAM, attains the worst results. 

The experimental results of the seven methods for the 
separation of vocal components from a monaural signal are 
depicted in Table 2.  

The MMSE STSA with generalized gamma distribution 
(SVD-GA-KAM) outperforms the other six methods in terms 
of NSDR, and is slightly lower than the proposed method in 
terms of NSIR, since speech is well modeled by gamma 
distribution. However, the proposed method yields better 
performance than GW, LSA, bSA, and WE.  

As shown in Tables 1 and 2, the proposed WbE delivers high 
performance results in the separation of both music and vocals 
from the mixed signal. However, the proposed WbE also 
comes with two disadvantages: (1) it requires a large number of  

 

Fig. 1. Boxplot of SDR for vocals. 
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Fig. 2. Boxplot of SDR for music accompaniment. 
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calculations and (2) the perceptually weighted order αj and the 
SVD-based factorized spectral amplitude βj are sometimes 
sensitive for estimating good models of the source 
spectrograms. Nevertheless, the adaptively estimated values for 
αj and βj through the iterative KBF process can result in a better 
source separation than the fixed values for αj and βj (although 
the fixed values are carefully chosen). 

For the second performance comparison, the proposed 
algorithm, SVD-WbE-KAM, was compared with REPET-
SIM [26], RPCA [27], and SVD-GW-KAM. To evaluate the 
separation of background music and singing voice, 40 full-
length song tracks [24] were used (20 songs from the ccMixter 
database containing many different musical genres, and 20 
songs from the MIR-1 K database). Figures 1 and 2 show 
boxplots of the SDR for the vocals and the music 
accompaniment, respectively. 

As can be seen from Figs. 1 and 2, the proposed method 
shows the highest SDR compared to the other three methods. 
Sound examples are available at http://imsp.kw.ac.kr/Research. 
html. 
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IV. Conclusion 

In this paper, a generalized weighted β-order MMSE 
estimation (WbE) method based on kernel back-fitting (KBF) 
was proposed and evaluated for the separation of mixed signals 
into music/voice components. The proposed algorithm 
enhances the basic KBF algorithm through application of 
generalized WbE. The proposed method has the following four 
advantages: (1) in the separation step, generalized WbE of the 
factorized spectral amplitude is used instead of GW for the 
KBF procedure to achieve better separation performances; (2) 
the perceptually weighted order αj and the SVD-based 
factorized spectral amplitude βj are adaptively calculated for 
effective WbE estimation performance; (3) in the back-fitting 
step, an SVD-based factorization procedure is applied to the 
power spectrogram filtered by median filter to achieve efficient 
compression before processing of the next source; and     
(4) using a back-fitting threshold, the KBF process can 
automatically be iteratively performed until convergence. The 
experimental results show that the proposed method obtained 
better results compared to other previously reported methods.  

In future work, focus will be centered on the optimization of 
the separation algorithm to allow more effective music/voice 
separation, along with the kernel characteristics. The method 
will be applied to music remixing for three-dimensional audio 
applications. 
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