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The searching of an extensive document database for 
documents that are locally similar to a given query 
document, and the subsequent detection of similar regions 
between such documents, is considered as an essential task 
in the fields of information retrieval and data 
management. In this paper, we present a framework for 
such a task. The proposed framework employs the 
method of short-read mapping, which is used in 
bioinformatics to reveal similarities between genomic 
sequences. In this paper, documents are considered 
biological objects; consequently, edit operations between 
locally similar documents are viewed as an evolutionary 
process. Accordingly, we are able to apply the method of 
evolution tracing in the detection of similar regions 
between documents. In addition, we propose heuristic 
methods to address issues associated with the different 
stages of the proposed framework, for example, a 
frequency-based fragment ordering method and a 
locality-aware interval aggregation method. Extensive 
experiments covering various scenarios related to the 
search of an extensive document database for documents 
that are locally similar to a given query document are 
considered, and the results indicate that the proposed 
framework outperforms existing methods. 
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I. Introduction 

As information repositories continue to store an ever-
increasing amount of data, the capability to search for items 
among such data has become increasingly more important.  

An inverted list-based information retrieval system is capable 
of conducting information searches well in certain domains. 
However, such a system is only able to accept a small number of 
words as an input query. Hence, for more complex input queries, 
we need an information search method other than an inverted list. 
Developing such a method (for handling complex input queries) 
is both complex and challenging. However, if achievable, it will 
have multiple potential applications including automatic 
document referencing [1] and text reuse detection [2]. In such 
applications, it is necessary to identify documents from a 
database that are locally similar to a given query document.  

In bioinformatics, to reveal the nature and functionality of an 
unknown sequence, it is essential that we be able to identify 
locally similar sequences from among a large number of 
sequence databases. One such method for achieving this is short-
read mapping [3], which has become popular with the 
development of second-generation sequencing technologies. We 
can trace the evolutionary paths of locally similar sequences by 
comparing sequences of phylogenetically close species.  

With the development of compressed self-indexes such as 
the FM-index [4], it has become feasible to load genome-scale 
sequences in random-access memory, which in turn means that 
it is now possible to utilize the short-read mapping method in 
the field of sequence analysis. 

If we consider documents as biological objects, edit 
operations such as insertions, deletions, and the substitutions of 
words or phrases can be viewed as an evolutionary process. We 
can then exploit biological sequence analysis tools to determine 
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the level of similarity of a document in relation to a given query 
document as if we were tracing evolutionary paths and 
identifying similarities among biological objects. 

In this paper, using a method utilized in biological sequence 
analysis, we present a framework capable of finding 
documents that are similar to a given query document from 
among an extensive document database. Owing to the 
effectiveness and scalability of the short-read mapping method 
underpinning our proposed framework, the proposed 
framework is also effective and scalable. In addition, we 
propose both an interval aggregation method (for use with a 
mapping profile) and a strategy to determine the order in which 
fragments are processed. The proposed method and strategy 
were designed to help adapt the short-read mapping method 
into one that is appropriate for a textual document analysis. 
Furthermore, in this paper, we discuss a case in which only a 
limited amount of time is given to the search process, which  
is considered the norm among real-world applications. For 
example, a server may be required to abort resource-
consuming tasks to ensure the quality of service, and can assign 
a deadline by which the tasks are to be terminated. Similarly, a 
server can deliver a termination command to tasks on a first-in, 
first-out manner based on the current load. Therefore, we must 
consider that an information searching task may be aborted at 
any time during its execution, with or without notice, and 
propose methods to address this problem. 

The remainder of this paper is organized as follows. 
Background knowledge is provided in Section II, and related 
works are reviewed in Section III. The proposed framework is 
presented in Section IV, and details of both the proposed strategy 
for fragment ordering and the proposed interval aggregation 
method are given in Sections V and VI, respectively. Section VII 
presents the experimental results, and Section VIII provides 
some concluding remarks regarding this research.  

II. Background 

1. Burrows–Wheeler Transform  

The Burrows–Wheeler transform (BWT) [5] of a character 
string results in a rearrangement of the string in such a way that 
it contains runs of similar characters.  

Let SA denote a suffix array [6] of string T, which has a 
length of n. Further, let SA[i] denote the position of the ith 
smallest suffix of T. The BWT of T, denoted by TBWT, is then 
defined as 

 BWT[ ] (SA[ ] 2)mod 1 .T i T i n n       

The BWT is an algorithm that transforms a character string into 
in a matrix form. Such a matrix, called a Burrows–Wheeler 

 

Fig. 1. BWT of the string “mississippi$”: (a) all conjugate strings 
obtained through a rotational shift of the input string and 
(b) a matrix of sorted conjugate strings. The first column 
is indicated by the letter “F.” The last column, indicated by 
the letter “L,” is the BWT of the input string. The shaded 
rectangles indicated by the letters “A” and “B” are the 
search results for patterns “i” and “si,” respectively. The 
letter “C” indicates the first and second occurrences of the 
character “s” in the final column, and is related to the 
search results for A and B. The column indicated by “SA” 
contains the corresponding suffix arrays. 
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matrix, can be computed by listing all of the strings obtained 
through rotational shift operations on T and sorting them in 
lexicographical order. The BWT of a Burrows–Wheeler matrix 
is taken to be the output of the algorithm itself, that is, the final 
column of the matrix. 

The BWT of the input string “mississippi$” is described in 
Fig. 1. Conceptually, we compute conjugate strings of the input 
string by executing rotational shifts, as shown in Fig. 1(a). We 
then sort all strings lexicographically to obtain a corresponding 
Burrows–Wheeler matrix, as shown in Fig. 1(b). 
Concatenation of the characters in the last column results in the 
BWT of the input string. 

2. FM-Index 

The BWT was originally developed for textual data 
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compression. However, it has been determined [4] that the 
BWT can in fact be used with full-text indexes.  

The FM-index is the first self-index to utilize a BWT and   
is the basis of many recent compressed indexes for string 
matching. It addresses the problem of space occupancy, which 
is a critical disadvantage of suffix trees and suffix arrays. The 
FM-index uses a property pertaining to the Burrows–Wheeler 
matrix. In such a matrix, the ith occurrence of a character in the 
first column corresponds to the ith occurrence of the same 
character in the final column; in other words, the two 
characters (one appearing in the first column and one appearing 
in the final column) have identical positions in relation to the 
initial input string and are in fact the same character. This is 
because the matrix is sorted in lexicographical order such that 
the ranks of strings having the same leading character are 
dominated by those of the same strings but with the first 
character removed. Using this property, we can efficiently 
execute string matching on a BWT. The result of a search for a 
string within a Burrows–Wheeler matrix is expressed in terms 
of the suffix range, [l, r]. 

Suppose we have suffix range [l, r] for query pattern P. The 
suffix range [l, r] for the pattern xP is then computed as 
follows: 

l = C(x) + rankx( l – 1) + 1, 

r = C(x) + rankx( r ), 

where C(x) is the number of characters on T that are less than x, 
and rankx(i) is the number of occurrences of x in TBWT[1: i]. 

Suppose we are given the text string “mississippi$” and that 
we wish to search for the pattern “si” by using a BWT. The 
process for such a search is described in Fig. 1(b). Because a 
BWT supports backward searches, we may start with the last 
character of the pattern, that is, the letter “i.” The search result 
for the character “i” is indicated by the letter “A.” From this 
result, we can obtain the result for the pattern “si” by searching 
the final column for the character “s” among only those rows 
represented in “A.” Given this, we can see that the third and 
fourth rows contain an “s” in the final-column position, as 
indicated by the letter “C” in the figure; these correspond to the 
first and second occurrences of the letter “s” in the final column. 
Thus, we seek the first and second occurrences of the letter “s” 
in the first column to yield the search result for pattern “si,” as 
indicated by the letter “B” in Fig. 1(b). 

If we wish to only compute the number of occurrences of a 
string pattern, we can then obtain this information by simply 
computing r – l + 1 for a given suffix range [l,  r]. When we 
wish to determine the exact position of each occurrence of a 
string pattern within an input string, we can compute this 
information from the associated suffix array information. That 
is, if we have a suffix range [l,  r], then the occurrences of a 

given string pattern will be at positions SA[i], where l ≤ i ≤ r.  
To save space, the FM-index does not store the entire suffix 

array. Instead, it stores only every kth element, which reduces 
the space requirement; however, it makes the computation of 
SA[i] more costly in terms of the amount of time taken. To 
emphasize the cost (that is, the time required) of such a 
computation on a suffix of rank i, we denote SA[i] by locate(i), 
thus removing the assumption behind the notation SA[i] that an 
array can be accessed within a fixed period of time. Similarly, 
count(P) is used to denote a function capable of computing the 
suffix range, [l,  r], of pattern P. Consequently, string matching 
on an FM-index can be represented as a call of count() 
followed by a call of locate() for as many times as the pattern 
occurs. 

3. Short-Read Mapping 

Bioinformatics is a research field wherein researchers 
attempt to understand biological data through the use of 
software tools and computational methods, and is employed 
primarily when one wishes to compare two or more biological 
sequences in an attempt to discover their functionalities by 
detecting their similarities.  

The problem to be addressed here is that it is technically 
infeasible to directly read a sequence from a biological object.  

Sequencing machines typically slice a sequence into a 
number of fragments. A significant number of such fragments, 
which are also referred to as short-reads, are then recognized 
and translated into digital data.  

Given a set of short-reads taken from a target sequence and a 
previously decoded sequence that is known to be similar to the 
target sequence (also known as a reference sequence), we can 
attempt to reconstruct the target sequence; here, the main aim is 
to try to map each short-read to a specific position in the 
reference sequence (using the short-read mapping method, [3], 
[7]) and then aggregate the mapped positions to deliver a 
desired result. Short-read mapping is closely related to the 
problem of identifying local similarities between strings, and is 
the method implemented in this present study to address the 
problem of document searching. 

III. Related Works 

The search of an extensive document database for 
documents that are locally similar to a given query document 
and the subsequent detection of similar regions between such 
documents involve source retrieval and text alignment methods 
[8]. Source retrieval is a method used to conduct a search of an 
extensive document database for documents that are locally 
similar to a given query document [9]. In a typical source 
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retrieval problem, a system utilizes a search engine to perform 
such a search. Current related researches have tended to focus 
on the use of commercial search engines; however, such 
engines accept only limited types of input queries, usually 
consisting of only a couple of keywords. Consequently, we 
must look for ways to generate suitable search queries for such 
engines. However, for those able to construct their own 
database (as opposed to accessing the databases of commercial 
search engine companies), it is desirable to develop a tailored 
search engine, that is, one that is specifically suited to utilizing 
specific types of inputs, as opposed to the use of commercial 
search engines. 

Text alignment is the task of aligning two documents to 
detect similar regions [10]. The Smith–Waterman algorithm, 
often referred to as a local sequence alignment, is a well-known 
method for determining similar regions between two strings. 
To overcome the quadratic complexity of such a local sequence 
alignment technique, seed-and-extend methods have been 
proposed [11]. Such methods first detect segment pairs having 
a certain level of similarity, which is a task that can be 
accomplished with the aid of a hash table containing keys (also 
known as seeds). Similar regions are then extended with regard 
to the context. The majority of state-of-the-art text alignment 
methods use seed-and-extend methods to accelerate the 
process of identifying a level of similarity between two or more 
documents. A seed-and-extend method is an effective method 
for the acceleration of a pairwise alignment between long 
sequences; however, such a method can consume a substantial 
amount of space if a significant number of documents need be 
indexed. 

IV. Proposed Framework 

In this paper, we wish to address the following problem: 
locate from a given set of documents only those segments that 
are locally similar to the query document.  

When we construct a long string, D, by concatenating all 
documents in the given set, the problem can then be formulated 
as follows: find all (i, j) such that ∃j, k, sim(D[i, j], Q[j, k]) ≥ θ, 
where sim() and θ are a user-defined similarity function and a 
threshold, respectively, and where Q denotes a query document. 

The proposed framework consists of four stages: (1) 
indexing, (2) query fragmentation, (3) string matching, and (4) 
interval aggregation. The overall procedure of the framework is 
described in Fig. 2.  

The “string matching” stage can be aborted during the 
processing of query fragments.  

Let P(t) be the measured performance at time t. Assuming 
P(t) is monotonically increasing, we can define the saturation 
time, t*, as t* = min { t | P(t) ≥ (1 – ε)P*} for some ε, where 

 

Fig. 2. Overall procedure of proposed framework comprising four 
stages: (1) indexing, (2) query fragmentation, (3) string 
matching, and (4) interval aggregation. 
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P* = limt→∞ P(t). Our aim is to minimize t* such that the 
performance is maximized within the minimum amount of 
time as possible. 

1. Indexing 

The first stage is the preprocessing of the document database 
through which a search of documents similar to the query 
document will be conducted. Because such a search is based 
on string matching, we use a full-text indexing method such as 
FM-index to preprocess the documents. Front-end processing 
tasks such as alphabet sampling, tokenization, and stemming 
can be conducted before constructing the full-text index of a 
concatenated string. This can improve the search performance 
by executing approximate string matching in an implicit 
manner.  

Suppose we are given documents d1, … , dn. Let D be the 
string obtained by concatenating all given documents d1, … , 
dn. We refer to D as the reference string from the term reference 
sequence, which refers to known sequences in bioinformatics. 
Let τ : Σ*→Σ’* be a function from string to string holding the 
following: for any string x and y, τ(x) matches τ(y) if x matches 
y. That is, if we transform two strings with a function having 
this property, no matchings will be missed when comparing  
the transformed strings. Note that all context-free transforms 
satisfy this property. It is also worth remarking that the range of 
τ is not necessarily the same as its domain. For example, one 
can use a set of English words for the underlying alphabet of 
the domain and a binary set for the alphabet of the range. 

2. Query Fragmentation 

The remaining three stages address query processing. When 
a query is given, we transform the query document with the 
function used in the indexing phase. It holds that no fragments 
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of the transformed query are missing in the string matching. 
After transforming, we extract substrings from the transformed 
query string. We denote an extraction function by φ, which 
accepts a string and yields a set of strings, each of which is a 
substring of the given string. We also have a total order < on 
the extracted substring set, which determines the order in 
which the fragments are delivered during the string-matching 
phase. This ordering is important when we have a restriction in 
that only a limited numbers of fragments can be processed. In 
such cases, we must process the fragments using the smallest 
keys. 

3. String Matching 

After extracting substrings from the query string, we execute 
string matching using each of the extracted fragments as a 
query pattern. The matching profile, denoted by M, is a set of 
matchings each of whose element is a triplet (pr, pq, l), where pr 
is the position on the reference string, pq is the position in the 
query, and l is the matching length. The matching interval in 
the reference string is [pr, pr + l – 1], and in the query string is 
[pq, pq + l – 1]. Both strings are assumed to be preprocessed by 
τ. 

4. Interval Aggregation 

When the string-matching phase is completed, we must 
determine the resulting intervals from the mapping profile. We 
denote an interval aggregation function by A, which accepts a 
mapping profile and yields a set of intervals that indicate the 
final similar regions. 

5. Example 

In this section, we present an example of the proposed 
framework. We set τ, which extracts English letters from a 
given string and converts them into lower case. Let φ be a 
function that accepts a string and yields the set of all character 
bigrams of the string. We define the fragment order < using the 
positions of the bigrams originated in the given query string, 
that is, fragments are sorted by their positions in the string. We 
define A to be a function that returns the union of the positions 
in the reference string. Next, suppose we are given a reference 
string D = “I am an example string!” and a query string Q = 
“Sample.” To begin, we have the preprocessed strings τ(D) = 
“iamanexamplestring” and τ(Q) = “sample.” After fragmenting 
the query, we have φ(τ(Q)) = {“sa,” “am,” “mp,” “pl,” “le”}, 
where the fragments are ordered based on their positions in Q; 
in fact, this is the same as written. That is, “sa” will be used first 
and “le” will be processed last in the string-matching stage. 
When string matching is completed, we have M = {(2,2,2), 

(8,2,2), (9,3,2), (10,4,2), (11,5,2)}. Because the corresponding 
intervals in the reference string will be {[2,3], [8,9], [9,10], 
[10,11], [11,12]}, the final result given by A is their union 
{[2,3], [8,12]}. This indicates that “am” at position “2” and 
“ample” at position “8” in the reference string are locally 
similar to the given query. If the search process is aborted after 
processing the bigram “mp,” we will have the mapping profile 
M = {(2,2,2), (8,2,2), (9,3,2)}, and the aggregated result will be 
{[2,3], [8,10]}. 

V. Fragment Mapping 

1. Least-Frequent-First Fragment Selection 

Assume that a deadline in which we do not have sufficient 
time to process all of the fragments is given; the search will be 
terminated before completing this process. Only a portion of 
the fragments can therefore be processed. Hence, we must 
determine what selection of fragments will be the most 
effective. A basic strategy that chooses fragments in the order 
of their position in the query will fail under this scenario 
because many parts of the query may be excluded from the 
search process. 

We focus on the observation that fragments have different 
frequencies; some occur very frequently, whereas others do not. 
In fact, it does not matter if we have sufficient time to process 
all of the fragments extracted from the query. However, when 
we have a time limit within which we are forced to return the 
search result, we must assign a priority to each fragment to 
allow us to process the more important fragments first. To 
address this problem, we select the fragments based on their 
frequency. A fragment with a lower frequency is selected 
before those with higher frequencies. That is, we sort the 
fragments in increasing order of frequency. 

Compared with sequential ordering, frequency-aware 
fragment selection has three advantages. 

First, we can process more fragments when only a limited 
numbers of locate() calls are permitted. If fragments are 
processed regardless of the number of occurrences, fragments 
with a high frequency can consume a substantial number of 
locate() calls and require an excessive amount of time owing to 
the time complexity related to the number of occurrences. 
Conversely, fragments having a low frequency require a 
reduced number of locate() calls; hence, we can process more 
fragments within the time restriction. In Fig. 3, the fragment 
“of ” is expected to occur at enormous numbers of positions 
throughout the reference string; hence, the time for processing 
the fragment is also expected to be lengthy. 

Frequency-based ordering can avoid this situation. Let f(x) 
be the number of occurrences of fragment x. Suppose we have 
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Fig. 3. Illustrative comparison of (a) sequential fragment ordering
and (b) frequency-based fragment ordering. The latter can
cover wider parts using a smaller number of fragments.
Moreover, sequential fragment ordering is seriously
influenced by the frequent occurrence of fragments. 
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a sequence <xi> of fragments arranged in their processing order. 
The number of distinct fragments we can process using t 
locate() calls is then expressed as the greatest index i such that 
Σ i

j = 0f(xj) < t. It is clear that the strategy to maximize such i is to 
sort fragments in their order of frequency. 

Second, we can cover a wider range across the query. 
Whereas only the front portion of the query can be processed in 
sequential ordering, as mentioned above, frequency-aware 
ordering is likely to select fragments with a higher variance in 
their positions in the query. Consequently, more of the query 
can be covered with a smaller number of fragments. An 
example is shown in Fig. 3. Suppose we have a query 
document identical to that shown in the figure. As illustrated in 
Fig. 3(a), sequential ordering covers only the initial portion of 
the query document. The frequency-based method, however, 
covers a wider range using a smaller number of fragments than 
the sequential ordering method. Consequently, when using the 
frequency-based ordering method, the performance reaches its 
peak significantly faster.  

To formulate this, we define the coverage as the maximum 
interval length that covers the positions of the matched 
fragments, and assume that each fragment is processed during 
one unit of time. Suppose we have a query Q of length |Q|, and 
where its corresponding interval in the reference string has  
the same length. For simplicity, the interval consists of |Q|/k 
independent k-length fragments. We can then represent this 
interval as a sequence of length |Q|/k, each element of which is 
the frequency of the fragment in that position. Let Sfreq(t) be  
the set of positions of t smallest values in the sequence. The 
coverage at time t can then be computed as maxSfreq(t) –
minSfreq(t) + 1. Note that maxSfreq(t) – minSfreq(t) + 1 is at least t 
because Sfreq(t) has t distinct positive integers. In the case of 
sequential ordering, Sseq(t) is defined as {1, … , t} such that the 
coverage at time t is always t. Therefore, frequency-aware 
fragment ordering has a higher degree of coverage than 
sequential ordering after processing the same number of 
fragments. 

As the third reason, which is more important, a high 
fragment frequency is likely to deteriorate the performance 
because such fragments produce a greater number of false 
positives. In other words, infrequent fragments contribute the 
most to the level of performance. Let us assume that the 
reference string consists of randomly drawn fragments in 
regions other than the actual similar regions considered; in 
other words, false positive regions consist of independent 
random fragments. Let p(x, y, d) be the probability that two 
fragments x and y will occur within a given interval comprised 
of d fragments. It is clear that if p(x, y, d) is higher, a higher 
number of false positives are likely to be produced. Let f(x) be 
the probability that fragment x will occur. The probability that 
neither fragments x and y will occur at all in the interval is   
(1– f(x) – f(y))d. The probability that no fragments x (or y) will 
occur in the interval is (1 – f(x))d (or (1 – f(y))d). Based on the 
inclusion-exclusion principle, the probability of either fragment 
x or fragment y not occurring in the interval will be (1 – f(x))d +  
(1 – f(y))d – (1 – f(x) – f(y))d. Hence, we have p(x, y, d) = 1 – (1 
– f(x))d – (1 – f(y))d + (1 – f(x) – f(y))d. Because ∂p(x, y, d)/ 
∂f(x) = d(1 – f(x))d–1 – d(1 – f(x) – f(y))d–1 ≥ 0, a greater number 
of false positives are likely to be produced as the fragment 
frequency increases, which has lead us to the use of infrequent 
fragments to reduce the number of false positive results. 

2. Delayed Selection for Overlapping Fragments 

When we use frequency-aware ordering, we must compute 
count(P) for each fragment P to determine their processing order. 
If the given time limit is overly short, such that only a small 
number of fragments can be processed, the computation of the 
number of occurrences of all fragments will be wasteful because 
the majority of the fragments will be unprocessed. If we can 
process only a portion of the fragments, it is better to select those 
fragments that cover as much of the query as possible. The 
simplest method to accomplish this is to avoid overlaps across 
the selected fragments. This strategy is also supported by the 
observation that overlapping fragments are also likely to appear 
as overlapped on the reference string because of their locality. 
Thus, if we have a limited capability to process fragments, it is 
wasteful to process overlapping fragments because they will 
occur simultaneously with a high probability. 

To minimize the overlapping between the fragments being 
processed, we divide the fragments into several groups where 
the fragments do not overlap. We then consider a group index 
for determining the processing order of the fragments instead 
of simply breaking the ties randomly or based on their position. 
More formally, we define the total order < f on the set of 
extracted fragments as follows: x < f y if and only if occ(x) +  
w group(x) < occ(y) + w group(y), where occ(x) is the number 
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of occurrences of x, group(x) is the group id of x, and w is an 
integer parameter. If w = 0, we do not consider the groups, and 
each group is likely to be processed more separately as w 
increases. Note that if we want to insert any fragments from a 
group into the priority queue, we must compute the number  
of occurrences for all fragments within the group. After 
computing the frequencies of the fragments in group i, we 
place them into the priority queue using their keys, which are 
their frequencies increased based on the group weight. The 
computation for the next group, i + 1, will be delayed until the 
smallest key in the priority queue exceeds w(i + 1), which is the 
lower bound of the key that a fragment in group i + 1 can have. 
We can also interpret w as the estimation of the cost required to 
compute the frequencies of the fragments in the next group. It 
is apparent that the sum of the length of the fragments in a 
group cannot exceed the length of the query document because 
they do not overlap. A length of time proportional to the query 
length is needed to insert the next group into the priority queue. 
Assuming that the cost of computing the frequency can be 
measured by the number of total characters, we simply set w as 
the length of the (preprocessed) query document. 

We use a greedy method to assign the group id to the 
fragments. First, scanning from left to right along the query, we 
select any disjointed fragments. We then repeat this starting at a 
position where the overlapping length of the fragments in the 
previous groups and those in the current group can be 
minimized. If we use fixed-length fragments, this can be 
formulated using a bit representation. Suppose we are 
extracting length-k fragments from the query document and k 
is a power of 2. In the first phase, we can make group 0 with 
the fragments starting at positions that are a multiple of k. For 
group 1, we choose fragments starting at a position whose 
remainder divided by k is k/2. In this manner, we minimize the 
maximum length of the overlapping interval of a pair of 
fragments selected from both group 0 and group 1. Similarly, 
group 2 must choose position k/4 or 3 k/4 as the starting 
position of the first fragment. We can make k groups by 
repeating this process. We can represent the group id, ranging 
from 0 to k–1, using a bit sequence of length lg k. We sort this 
bit sequence in reverse lexicographical order. The group index 
of the fragment starting at position j is the rank of the bit 
representation of j, as previously defined. For example, if k = 8, 
we require lg 8 = 3 bits to represent the group id, and the bit 
sequences are sorted as 000, 100, 010, 110, 001, 101, 011, and 
111. Accordingly, the starting positions of the first fragment of 
each group will be 0, 4, 2, 6, 1, 5, 3, and 7, respectively. 

3. Suffix Range Reuse 

Even though we can process fragments more efficiently 

through grouping, as discussed previously, it is necessary to 
scan the entire query document whenever a group of fragments 
is initiated. In computing these frequencies, the most costly 
task is updating the suffix range on a Burrows–Wheeler 
transformed text. In particular, if we use compressed bit vectors 
to implement a rank() data structure, the cost for updating the 
suffix ranges become much higher. In this case, we can reuse 
the suffix range of the previously searched fragments instead of 
computing the suffix range for each fragment all over again. 

Computing the suffix range of similar strings has also been 
addressed in the area of bioinformatics, and some short-read 
mapping tools such as in [12] construct in advance a hash table 
that contains the suffix ranges of all strings of a specific length. 
Although this technique dramatically reduces the search time 
and can be directly adopted, manipulating a hash table is not a 
good idea for our situation. There are two main reasons for this. 
First, the size of the alphabet is much larger than that of 
biological sequences, which results in an excessively large hash 
table. A large hash table involves not only an out-of-memory 
problem, but also loading overhead. Second, the length of the 
fragment should be fixed in the indexing time to benefit from 
precomputing the frequencies. 

We present a trie-based approach to address this problem. 
When computing the suffix range for a fragment, we traverse 
each trie whose nodes contain the suffix range for its 
corresponding string. We start with the root node of the trie. We 
traverse the trie to determine the reverse of the query fragment. 
If we encounter a node that does not have a child node for the 
current character, say in position i, we then compute the suffix 
range for Q[i:|Q|]. Because we already have the suffix range for 
Q[i + 1:|Q|], it takes only O(1) time. We then create a new child 
node and save the suffix range into it. Actually, it also takes 
O(1) to descend a node in the trie, but its constant factor is 
much smaller than that when computing the suffix range again. 
As a result, we can save a significant amount of computational 
cost in practice, particularly when the rank() data structure is 
very slow owing to its compression ratio. Moreover, this trie-
based method does not require a large amount of space; the trie 
has only O(k|Q|) nodes in the worst case because there are 
O(k|Q|) fragments for a given query document. 

VI. Interval Aggregation 

In this section, we propose different interval aggregation 
methods for effectively computing the results from a mapping 
profile. Because only a limited number of fragments are 
processed, and these fragments have low frequencies, the 
mapping profile has an extremely small number of matchings. 
Note that our assumption is that fragments that are close to 
each other in the query document are likely to be matched at 
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close positions in the reference string. Fragments are likely to 
be located more densely in similar regions, whereas most of the 
fragments are located sparsely throughout the reference string. 
However, the positions where the matchings are located are not 
necessarily contiguous even in similar regions because the 
number of fragments is insufficient, and the similar regions in 
the reference string can be slightly different from the query. An 
immediate result right after the string matching process is thus 
a set of short matching segments; hence, we must merge close 
intervals into a long interval to report the final results. 

1. Simple Merging Method 

We can simply merge two intervals that are closer than the 
threshold distance d. That is, two matchings (pr

(1), pq
(1), l(1)) and 

(pr
(2), pq

(2), l(2)) are merged if their corresponding intervals [pr
(1), 

pr
(1) + l(1)], [pr

(2), pr
(2) + l(2)] are closer than d. Because we use 

fixed-length fragments, we have l = l(1) = l(2). Then, without a 
loss of generality, we can assume that pr

(1) < pr
(2). Now, we can 

illustrate this as the merging of intervals [pr
(1), pr

(1) + l + d] and 
[pr

(2), pr
(2) + l + d] into one long interval [pr

(1), pr
(2) + l + d] if they 

are overlapped. After merging all of the overlapped intervals, 
we discard intervals shorter than C to remove any accidental 
matchings. A greater value of C can result in the filtering of 
more false positives; however, correct answers may be 
discarded. 

2. Locality-Aware Merging Method 

The simple merging method cannot resolve cases in which 
two unrelated fragments are accidentally matched close to each 
other in the reference string. For example, suppose there are 
fragments that are more than tens of sentences apart from each 
other; however, they are matched in the reference sting within a 
single sentence. The simple merging method will merge these 
intervals into one long interval; however, this is not reasonable 
because they actually have nothing to do with each other. To 
ensure the locality in the query, we consider not only the 
distance in the reference string but also that in the query string. 
Thus, we merge two matchings (pr

(1), pq
(1), l(1)) and (pr

(2), pq
(2), 

l(2)) if both pairs of intervals [pr
(1), pr

(1) + l(1)], [pr
(2), pr

(2) + l(2)] and 
[pq

(1), pq
(1) + l(1)], [pq

(2), pq
(2) + l(2)] are closer than threshold d. 

Similar to the simple merging method, assuming l = l(1) = l(2), a 
matching (pr

(1), pq
(1), l(1)) can be represented as an axis-parallel 

rectangle (pr
(1), pq

(1), pr
(1) + l, pq

(1) + l), which is defined by the 
bottom-left (pr

(1), pq
(1)) and top-right (pr

(1) + l, pq
(1) + l) points. 

This can then be described geometrically as the merging of 
extended rectangles (pr

(1), pq
(1), pr

(1) + l + d, pq
(1) + l + d) and (pr

(2), 
pq

(2), pr
(2) + l + d, pq

(2) + l + d) if they are overlapped. The 
merged rectangle is their minimum surrounding rectangle. 
After merging the rectangles, we contract the resulting 

rectangles using d. Finally, we discard those rectangles whose 
side is shorter than C to reduce false positives.  

Compared with the simple merging method, the locality-
aware merging method reduces the number of false positives in 
a probabilistic manner. Suppose we use the simple merging 
method, and that a fragment x occurs in position i in the 
reference string. The occurrence probability of a false positive 
merging from a fragment x and another fragment y will then be 
the same as the probability that at least one y occurs within 
distance d from x. We denote this probability as ρ. When we 
use the locality-aware method, a matched fragment y should 
also occur close to x in the query. If we have m number of 
fragments y in the query, then the probability that no fragments 
y will occur within the interval of 2d + 1 centered at the 
position of fragment x can be roughly expressed as 1 – B(|Q| – 
2d – 1, m)/B(|Q| – 1, m), where B(n, m) is a binomial 
coefficient. Thus, the false positive probability can be estimated 
as ρ(1 – B(|Q| – 2d – 1, m)/B(|Q| – 1, m)) < ρ, which tells us that 
the false positive probability of the locality-aware merging 
method is much smaller than that of the simple merging method.  

VII. Experimental Evaluation 

1. Experiment Setting 

For our evaluation, we used the PAN 2013 dataset [13], 
which has been utilized in plagiarism detection competitions, 
The dataset consists of four subsets, each of which contains its 
own type of plagiarism cases; among them, we used the 
random obfuscation cases. This subset consists of 1,000 pairs 
of suspicious documents and the source document. Suspicious 
documents are produced by artificially plagiarizing a portion of 
the source document. We also used the publicly available Pizza 
& Chili English corpus [14]. We excerpted it into the proper 
size and concatenated it with each of the source documents to 
generate a reference document. All alphabet letters were 
converted into lower case, and non-alphanumeric characters 
were removed. 

The experiments were conducted for three reasons. First, we 
wanted to show that our method works well in the comparison 
of document pairs. To demonstrate this, we compared our 
method against a state-of-the-art text alignment method [2], 
and measured the character-level F-score. Second, we also 
hoped to show that our method is more robust to a large sized 
document database. We also compared our method against a 
winnowing-based near-duplicate document search method [15], 
and evaluated them both based on their document-level 
accuracy. Finally, we conducted experiments to demonstrate 
the superiority of the newly proposed technique, which 
improves the performance of a genomic read-mapping model 
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Table 1. Performance of one-to-one text alignment. 

 Precision Recall F-score 

Existing method [2] 0.810 0.834 0.822 

Proposed method (f ≤ 1) 0.960 0.691 0.803 

Proposed method (f ≤ 2) 0.909 0.759 0.827 

Proposed method (f ≤ 3) 0.870 0.781 0.823 

 

Table 2. Search performance for the most similar document. 

 True False Accuracy 

Existing method [18] 438 562 0.438 

Existing method [18] (f ≤ 3) 504 496 0.504 

Proposed method 614 386 0.614 

 

 
based document search method. 

2. Pairwise Comparison 

We conducted text alignment experiments to demonstrate the 
performance of a pairwise comparison. The dataset used has 
1,000 pairs of documents, each of which consists of a 
suspicious document and a source document. We attempted to 
find similar regions in the source document for a suspicious 
document given as a query. We measured the F-score using the 
sum of the true positive, false positive, and false negative 
intervals in the source document at the character level. Our 
method used fragments having a frequency of less than or 
equal to f in the first group as compared to a state-of-the-art text 
alignment method [2]. For the parameters, we used k = 8 and  
d = 128. 

As described in Table 1, the experimental results indicate that 
our method is competitive with the state-of-the-art method. 
Note that the text alignment method focuses solely on a 
pairwise comparison, and thus the expansion for a large 
document set is not trivial, whereas our method is robust 
regardless of the database size. 

3. Searching in Large Document Set 

To simulate a large volume document database, we 
constructed a corpus with a size of 100 MB. The corpus size 
after removing non-alphanumeric characters is about 80 M. 
Because the corpus we used does not have a document 
boundary, we split it into 22 K documents, each of which at a 
length of about 3.6 K, which is the average length of the source 
documents in the given dataset. In this experiment, we did not 
aggregate the matching fragments. Instead, we counted the 

number of fragments located in each document, and chose the 
top document with the greatest number of matches. Similarly, 
we generated a document signature according to [15] using the 
parameters q = 4 and w = 146, counted the number of shared 
signatures between the query and documents in the database, 
and returned the top results. As shown in Table 2, our method 
outperforms the existing winnowing-based method. 

4. Performance Convergence 

We also compared the proposed method against the methods 
presented in [16] and [17]. For each pair of suspicious and 
source documents in the dataset, we concatenated the source 
document and a string of length 1 M excerpted from the corpus, 
and then processed the suspicious document as a query. The 
combinations of parameters used were k{8, 10, 12, 14, 16}, 
d{32, 64, 128, 256, 512}, where C was fixed at 100. We 
measured the best F-score at every 0.5 ms during the search. 
The results are shown in Fig. 4. As expected, the performance 
of the method using all of the proposed strategies converged 
the most quickly. The non-grouping method was the worst 
during the first tens of milliseconds because it consumed too 
much time in computing the frequencies of all fragments in the  
 

 

Fig. 4. Convergence performance with respect to time. The 
method using all of the proposed strategies outperformed 
the other combinations. 
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Fig. 5. Performance of naive and suffix range reuse method in 
terms of the processing time (a) and number of rank() calls 
(b). 
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initial phase. The simple aggregation method performed well 
but slightly worse than the locality-aware aggregation method. 

5. Suffix Range Reuse 

We measured the processing time and number of calls of 
function rank() to demonstrate the efficiency of a trie-based 
reuse of the suffix range. For this experiment, we used an RRR 
bit vector [18] with a block size of 7, as provided by the 
Succinct Data Structure Library [19]. The experimental results 
are shown in Fig. 5. The processing time and number of rank() 
calls can be improved by up to 50% when we reuse the suffix 
range, as proposed herein. 

VIII. Conclusion  

Searching for similar documents in an extensive database is 
an important task in recent applications of information retrieval 
and data management. This paper addressed the problem of 
finding documents that are locally similar to a given query 
document by borrowing the short-read mapping method from 
the field of bioinformatics, in which the local similarity search 
problem has been actively discussed. We also determined 
specific issues arising in the text search problem. The main 
contributions of the paper can be summarized as follows: 

We proposed a framework for similar document searches. 
The framework is flexible because we can designate the 
parameters used for the appropriate target document 
characteristics. 

For the efficiency and effectiveness of the search process, we 
proposed a frequency-based fragment ordering and fragment 
grouping method. We also presented a trie-based suffix range 
reuse method that improves the performance in terms of the 
search time, particularly when slow compressed bit vectors are 
used in the implementation of the full-text index. 

Locality-aware interval aggregation methods were also 
proposed, and were confirmed to be effective in improving the 
search results by preventing accidental matches. 

We conducted extensive experiments using various search 
scenarios including a one-to-one text alignment and a search 
from a large document set. The results showed that the 
proposed method outperforms previous existing methods. 
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