
518 Sung-Hwan Kim and Hwan-Gue Cho © 2016 ETRI Journal, Volume 38, Number 3, June 2016
http://dx.doi.org/10.4218/etrij.16.0115.0594

The searching of an extensive document database for
documents that are locally similar to a given query
document, and the subsequent detection of similar regions
between such documents, is considered as an essential task
in the fields of information retrieval and data
management. In this paper, we present a framework for
such a task. The proposed framework employs the
method of short-read mapping, which is used in
bioinformatics to reveal similarities between genomic
sequences. In this paper, documents are considered
biological objects; consequently, edit operations between
locally similar documents are viewed as an evolutionary
process. Accordingly, we are able to apply the method of
evolution tracing in the detection of similar regions
between documents. In addition, we propose heuristic
methods to address issues associated with the different
stages of the proposed framework, for example, a
frequency-based fragment ordering method and a
locality-aware interval aggregation method. Extensive
experiments covering various scenarios related to the
search of an extensive document database for documents
that are locally similar to a given query document are
considered, and the results indicate that the proposed
framework outperforms existing methods.

Keywords: Text similarity search, document search,
short-read mapping, approximate string matching,
plagiarism detection.

Manuscript received July 7, 2015; revised Dec. 21, 2015; accepted Jan. 25, 2016.
This work was supported by the Marine Biotechnology Program of Ministry of Oceans and

Fisheries, Republic of Korea (PJT200620).
Sung-Hwan Kim (sunghwan@pusan.ac.kr) and Hwan-Gue Cho (corresponding author,

hgcho@pusan.ac.kr) are with the Department of Electrical and Computer Engineering, Pusan
National University, Rep. of Korea.

I. Introduction

As information repositories continue to store an ever-
increasing amount of data, the capability to search for items
among such data has become increasingly more important.

An inverted list-based information retrieval system is capable
of conducting information searches well in certain domains.
However, such a system is only able to accept a small number of
words as an input query. Hence, for more complex input queries,
we need an information search method other than an inverted list.
Developing such a method (for handling complex input queries)
is both complex and challenging. However, if achievable, it will
have multiple potential applications including automatic
document referencing [1] and text reuse detection [2]. In such
applications, it is necessary to identify documents from a
database that are locally similar to a given query document.

In bioinformatics, to reveal the nature and functionality of an
unknown sequence, it is essential that we be able to identify
locally similar sequences from among a large number of
sequence databases. One such method for achieving this is short-
read mapping [3], which has become popular with the
development of second-generation sequencing technologies. We
can trace the evolutionary paths of locally similar sequences by
comparing sequences of phylogenetically close species.

With the development of compressed self-indexes such as
the FM-index [4], it has become feasible to load genome-scale
sequences in random-access memory, which in turn means that
it is now possible to utilize the short-read mapping method in
the field of sequence analysis.

If we consider documents as biological objects, edit
operations such as insertions, deletions, and the substitutions of
words or phrases can be viewed as an evolutionary process. We
can then exploit biological sequence analysis tools to determine

Fast, Flexible Text Search Using
Genomic Short-Read Mapping Model

Sung-Hwan Kim and Hwan-Gue Cho

ETRI Journal, Volume 38, Number 3, June 2016 Sung-Hwan Kim and Hwan-Gue Cho 519
http://dx.doi.org/10.4218/etrij.16.0115.0594

the level of similarity of a document in relation to a given query
document as if we were tracing evolutionary paths and
identifying similarities among biological objects.

In this paper, using a method utilized in biological sequence
analysis, we present a framework capable of finding
documents that are similar to a given query document from
among an extensive document database. Owing to the
effectiveness and scalability of the short-read mapping method
underpinning our proposed framework, the proposed
framework is also effective and scalable. In addition, we
propose both an interval aggregation method (for use with a
mapping profile) and a strategy to determine the order in which
fragments are processed. The proposed method and strategy
were designed to help adapt the short-read mapping method
into one that is appropriate for a textual document analysis.
Furthermore, in this paper, we discuss a case in which only a
limited amount of time is given to the search process, which
is considered the norm among real-world applications. For
example, a server may be required to abort resource-
consuming tasks to ensure the quality of service, and can assign
a deadline by which the tasks are to be terminated. Similarly, a
server can deliver a termination command to tasks on a first-in,
first-out manner based on the current load. Therefore, we must
consider that an information searching task may be aborted at
any time during its execution, with or without notice, and
propose methods to address this problem.

The remainder of this paper is organized as follows.
Background knowledge is provided in Section II, and related
works are reviewed in Section III. The proposed framework is
presented in Section IV, and details of both the proposed strategy
for fragment ordering and the proposed interval aggregation
method are given in Sections V and VI, respectively. Section VII
presents the experimental results, and Section VIII provides
some concluding remarks regarding this research.

II. Background

1. Burrows–Wheeler Transform

The Burrows–Wheeler transform (BWT) [5] of a character
string results in a rearrangement of the string in such a way that
it contains runs of similar characters.

Let SA denote a suffix array [6] of string T, which has a
length of n. Further, let SA[i] denote the position of the ith
smallest suffix of T. The BWT of T, denoted by TBWT, is then
defined as

 BWT[] (SA[] 2)mod 1 .T i T i n n     

The BWT is an algorithm that transforms a character string into
in a matrix form. Such a matrix, called a Burrows–Wheeler

Fig. 1. BWT of the string “mississippi$”: (a) all conjugate strings
obtained through a rotational shift of the input string and
(b) a matrix of sorted conjugate strings. The first column
is indicated by the letter “F.” The last column, indicated by
the letter “L,” is the BWT of the input string. The shaded
rectangles indicated by the letters “A” and “B” are the
search results for patterns “i” and “si,” respectively. The
letter “C” indicates the first and second occurrences of the
character “s” in the final column, and is related to the
search results for A and B. The column indicated by “SA”
contains the corresponding suffix arrays.

m i s s i s s i p p i $

m i s s i s s i p p i $

m i s s i s s i p p i $

m i s s i s s i p p i $

m i s s i s s i p p i $

m i s s i s s i p p i $

m i s s i s s i p p i $

m i s s i s s i p p i $

m i s s i s s i p p i $

m i s s i s s i p p i $

m i s s i s s i p p i $

m i s s i s s i p p i $

(a)

 $ m i s s i s s i p p i

i $ m i s s i s s i p p

i p p i $ m i s s i s s

i s s i p p i $ m i s s

i s s i s s i p p i $ m

$ m i s s i s s i p p i

p i $ m i s s i s s i p

p p i $ m i s s i s s i

s i p p i $ m i s s i s

s i s s i p p i $ m i s

s s i p p i $ m i s s i

s s i s s i p p i $ m i

12

11

8

5

2

1

10

9

7

4

6

3

SA L F

A

B

C

(b)

matrix, can be computed by listing all of the strings obtained
through rotational shift operations on T and sorting them in
lexicographical order. The BWT of a Burrows–Wheeler matrix
is taken to be the output of the algorithm itself, that is, the final
column of the matrix.

The BWT of the input string “mississippi$” is described in
Fig. 1. Conceptually, we compute conjugate strings of the input
string by executing rotational shifts, as shown in Fig. 1(a). We
then sort all strings lexicographically to obtain a corresponding
Burrows–Wheeler matrix, as shown in Fig. 1(b).
Concatenation of the characters in the last column results in the
BWT of the input string.

2. FM-Index

The BWT was originally developed for textual data

520 Sung-Hwan Kim and Hwan-Gue Cho ETRI Journal, Volume 38, Number 3, June 2016
http://dx.doi.org/10.4218/etrij.16.0115.0594

compression. However, it has been determined [4] that the
BWT can in fact be used with full-text indexes.

The FM-index is the first self-index to utilize a BWT and
is the basis of many recent compressed indexes for string
matching. It addresses the problem of space occupancy, which
is a critical disadvantage of suffix trees and suffix arrays. The
FM-index uses a property pertaining to the Burrows–Wheeler
matrix. In such a matrix, the ith occurrence of a character in the
first column corresponds to the ith occurrence of the same
character in the final column; in other words, the two
characters (one appearing in the first column and one appearing
in the final column) have identical positions in relation to the
initial input string and are in fact the same character. This is
because the matrix is sorted in lexicographical order such that
the ranks of strings having the same leading character are
dominated by those of the same strings but with the first
character removed. Using this property, we can efficiently
execute string matching on a BWT. The result of a search for a
string within a Burrows–Wheeler matrix is expressed in terms
of the suffix range, [l, r].

Suppose we have suffix range [l, r] for query pattern P. The
suffix range [l, r] for the pattern xP is then computed as
follows:

l = C(x) + rankx(l – 1) + 1,

r = C(x) + rankx(r),

where C(x) is the number of characters on T that are less than x,
and rankx(i) is the number of occurrences of x in TBWT[1: i].

Suppose we are given the text string “mississippi$” and that
we wish to search for the pattern “si” by using a BWT. The
process for such a search is described in Fig. 1(b). Because a
BWT supports backward searches, we may start with the last
character of the pattern, that is, the letter “i.” The search result
for the character “i” is indicated by the letter “A.” From this
result, we can obtain the result for the pattern “si” by searching
the final column for the character “s” among only those rows
represented in “A.” Given this, we can see that the third and
fourth rows contain an “s” in the final-column position, as
indicated by the letter “C” in the figure; these correspond to the
first and second occurrences of the letter “s” in the final column.
Thus, we seek the first and second occurrences of the letter “s”
in the first column to yield the search result for pattern “si,” as
indicated by the letter “B” in Fig. 1(b).

If we wish to only compute the number of occurrences of a
string pattern, we can then obtain this information by simply
computing r – l + 1 for a given suffix range [l,  r]. When we
wish to determine the exact position of each occurrence of a
string pattern within an input string, we can compute this
information from the associated suffix array information. That
is, if we have a suffix range [l,  r], then the occurrences of a

given string pattern will be at positions SA[i], where l ≤ i ≤ r.
To save space, the FM-index does not store the entire suffix

array. Instead, it stores only every kth element, which reduces
the space requirement; however, it makes the computation of
SA[i] more costly in terms of the amount of time taken. To
emphasize the cost (that is, the time required) of such a
computation on a suffix of rank i, we denote SA[i] by locate(i),
thus removing the assumption behind the notation SA[i] that an
array can be accessed within a fixed period of time. Similarly,
count(P) is used to denote a function capable of computing the
suffix range, [l,  r], of pattern P. Consequently, string matching
on an FM-index can be represented as a call of count()
followed by a call of locate() for as many times as the pattern
occurs.

3. Short-Read Mapping

Bioinformatics is a research field wherein researchers
attempt to understand biological data through the use of
software tools and computational methods, and is employed
primarily when one wishes to compare two or more biological
sequences in an attempt to discover their functionalities by
detecting their similarities.

The problem to be addressed here is that it is technically
infeasible to directly read a sequence from a biological object.

Sequencing machines typically slice a sequence into a
number of fragments. A significant number of such fragments,
which are also referred to as short-reads, are then recognized
and translated into digital data.

Given a set of short-reads taken from a target sequence and a
previously decoded sequence that is known to be similar to the
target sequence (also known as a reference sequence), we can
attempt to reconstruct the target sequence; here, the main aim is
to try to map each short-read to a specific position in the
reference sequence (using the short-read mapping method, [3],
[7]) and then aggregate the mapped positions to deliver a
desired result. Short-read mapping is closely related to the
problem of identifying local similarities between strings, and is
the method implemented in this present study to address the
problem of document searching.

III. Related Works

The search of an extensive document database for
documents that are locally similar to a given query document
and the subsequent detection of similar regions between such
documents involve source retrieval and text alignment methods
[8]. Source retrieval is a method used to conduct a search of an
extensive document database for documents that are locally
similar to a given query document [9]. In a typical source

ETRI Journal, Volume 38, Number 3, June 2016 Sung-Hwan Kim and Hwan-Gue Cho 521
http://dx.doi.org/10.4218/etrij.16.0115.0594

retrieval problem, a system utilizes a search engine to perform
such a search. Current related researches have tended to focus
on the use of commercial search engines; however, such
engines accept only limited types of input queries, usually
consisting of only a couple of keywords. Consequently, we
must look for ways to generate suitable search queries for such
engines. However, for those able to construct their own
database (as opposed to accessing the databases of commercial
search engine companies), it is desirable to develop a tailored
search engine, that is, one that is specifically suited to utilizing
specific types of inputs, as opposed to the use of commercial
search engines.

Text alignment is the task of aligning two documents to
detect similar regions [10]. The Smith–Waterman algorithm,
often referred to as a local sequence alignment, is a well-known
method for determining similar regions between two strings.
To overcome the quadratic complexity of such a local sequence
alignment technique, seed-and-extend methods have been
proposed [11]. Such methods first detect segment pairs having
a certain level of similarity, which is a task that can be
accomplished with the aid of a hash table containing keys (also
known as seeds). Similar regions are then extended with regard
to the context. The majority of state-of-the-art text alignment
methods use seed-and-extend methods to accelerate the
process of identifying a level of similarity between two or more
documents. A seed-and-extend method is an effective method
for the acceleration of a pairwise alignment between long
sequences; however, such a method can consume a substantial
amount of space if a significant number of documents need be
indexed.

IV. Proposed Framework

In this paper, we wish to address the following problem:
locate from a given set of documents only those segments that
are locally similar to the query document.

When we construct a long string, D, by concatenating all
documents in the given set, the problem can then be formulated
as follows: find all (i, j) such that ∃j, k, sim(D[i, j], Q[j, k]) ≥ θ,
where sim() and θ are a user-defined similarity function and a
threshold, respectively, and where Q denotes a query document.

The proposed framework consists of four stages: (1)
indexing, (2) query fragmentation, (3) string matching, and (4)
interval aggregation. The overall procedure of the framework is
described in Fig. 2.

The “string matching” stage can be aborted during the
processing of query fragments.

Let P(t) be the measured performance at time t. Assuming
P(t) is monotonically increasing, we can define the saturation
time, t*, as t* = min { t | P(t) ≥ (1 – ε)P*} for some ε, where

Fig. 2. Overall procedure of proposed framework comprising four
stages: (1) indexing, (2) query fragmentation, (3) string
matching, and (4) interval aggregation.

Document database

(1) Indexing

Query document

(2) Fragmentation

(3) String matching

(4) Interval
aggregation

Search result

Mapping profile

Reference string

P* = limt→∞ P(t). Our aim is to minimize t* such that the
performance is maximized within the minimum amount of
time as possible.

1. Indexing

The first stage is the preprocessing of the document database
through which a search of documents similar to the query
document will be conducted. Because such a search is based
on string matching, we use a full-text indexing method such as
FM-index to preprocess the documents. Front-end processing
tasks such as alphabet sampling, tokenization, and stemming
can be conducted before constructing the full-text index of a
concatenated string. This can improve the search performance
by executing approximate string matching in an implicit
manner.

Suppose we are given documents d1, … , dn. Let D be the
string obtained by concatenating all given documents d1, … ,
dn. We refer to D as the reference string from the term reference
sequence, which refers to known sequences in bioinformatics.
Let τ : Σ*→Σ’* be a function from string to string holding the
following: for any string x and y, τ(x) matches τ(y) if x matches
y. That is, if we transform two strings with a function having
this property, no matchings will be missed when comparing
the transformed strings. Note that all context-free transforms
satisfy this property. It is also worth remarking that the range of
τ is not necessarily the same as its domain. For example, one
can use a set of English words for the underlying alphabet of
the domain and a binary set for the alphabet of the range.

2. Query Fragmentation

The remaining three stages address query processing. When
a query is given, we transform the query document with the
function used in the indexing phase. It holds that no fragments

522 Sung-Hwan Kim and Hwan-Gue Cho ETRI Journal, Volume 38, Number 3, June 2016
http://dx.doi.org/10.4218/etrij.16.0115.0594

of the transformed query are missing in the string matching.
After transforming, we extract substrings from the transformed
query string. We denote an extraction function by φ, which
accepts a string and yields a set of strings, each of which is a
substring of the given string. We also have a total order < on
the extracted substring set, which determines the order in
which the fragments are delivered during the string-matching
phase. This ordering is important when we have a restriction in
that only a limited numbers of fragments can be processed. In
such cases, we must process the fragments using the smallest
keys.

3. String Matching

After extracting substrings from the query string, we execute
string matching using each of the extracted fragments as a
query pattern. The matching profile, denoted by M, is a set of
matchings each of whose element is a triplet (pr, pq, l), where pr
is the position on the reference string, pq is the position in the
query, and l is the matching length. The matching interval in
the reference string is [pr, pr + l – 1], and in the query string is
[pq, pq + l – 1]. Both strings are assumed to be preprocessed by
τ.

4. Interval Aggregation

When the string-matching phase is completed, we must
determine the resulting intervals from the mapping profile. We
denote an interval aggregation function by A, which accepts a
mapping profile and yields a set of intervals that indicate the
final similar regions.

5. Example

In this section, we present an example of the proposed
framework. We set τ, which extracts English letters from a
given string and converts them into lower case. Let φ be a
function that accepts a string and yields the set of all character
bigrams of the string. We define the fragment order < using the
positions of the bigrams originated in the given query string,
that is, fragments are sorted by their positions in the string. We
define A to be a function that returns the union of the positions
in the reference string. Next, suppose we are given a reference
string D = “I am an example string!” and a query string Q =
“Sample.” To begin, we have the preprocessed strings τ(D) =
“iamanexamplestring” and τ(Q) = “sample.” After fragmenting
the query, we have φ(τ(Q)) = {“sa,” “am,” “mp,” “pl,” “le”},
where the fragments are ordered based on their positions in Q;
in fact, this is the same as written. That is, “sa” will be used first
and “le” will be processed last in the string-matching stage.
When string matching is completed, we have M = {(2,2,2),

(8,2,2), (9,3,2), (10,4,2), (11,5,2)}. Because the corresponding
intervals in the reference string will be {[2,3], [8,9], [9,10],
[10,11], [11,12]}, the final result given by A is their union
{[2,3], [8,12]}. This indicates that “am” at position “2” and
“ample” at position “8” in the reference string are locally
similar to the given query. If the search process is aborted after
processing the bigram “mp,” we will have the mapping profile
M = {(2,2,2), (8,2,2), (9,3,2)}, and the aggregated result will be
{[2,3], [8,10]}.

V. Fragment Mapping

1. Least-Frequent-First Fragment Selection

Assume that a deadline in which we do not have sufficient
time to process all of the fragments is given; the search will be
terminated before completing this process. Only a portion of
the fragments can therefore be processed. Hence, we must
determine what selection of fragments will be the most
effective. A basic strategy that chooses fragments in the order
of their position in the query will fail under this scenario
because many parts of the query may be excluded from the
search process.

We focus on the observation that fragments have different
frequencies; some occur very frequently, whereas others do not.
In fact, it does not matter if we have sufficient time to process
all of the fragments extracted from the query. However, when
we have a time limit within which we are forced to return the
search result, we must assign a priority to each fragment to
allow us to process the more important fragments first. To
address this problem, we select the fragments based on their
frequency. A fragment with a lower frequency is selected
before those with higher frequencies. That is, we sort the
fragments in increasing order of frequency.

Compared with sequential ordering, frequency-aware
fragment selection has three advantages.

First, we can process more fragments when only a limited
numbers of locate() calls are permitted. If fragments are
processed regardless of the number of occurrences, fragments
with a high frequency can consume a substantial number of
locate() calls and require an excessive amount of time owing to
the time complexity related to the number of occurrences.
Conversely, fragments having a low frequency require a
reduced number of locate() calls; hence, we can process more
fragments within the time restriction. In Fig. 3, the fragment
“of ” is expected to occur at enormous numbers of positions
throughout the reference string; hence, the time for processing
the fragment is also expected to be lengthy.

Frequency-based ordering can avoid this situation. Let f(x)
be the number of occurrences of fragment x. Suppose we have

ETRI Journal, Volume 38, Number 3, June 2016 Sung-Hwan Kim and Hwan-Gue Cho 523
http://dx.doi.org/10.4218/etrij.16.0115.0594

Fig. 3. Illustrative comparison of (a) sequential fragment ordering
and (b) frequency-based fragment ordering. The latter can
cover wider parts using a smaller number of fragments.
Moreover, sequential fragment ordering is seriously
influenced by the frequent occurrence of fragments.

B W T o f t h e t e x t M C M C i s

B W T

W T
T o f

B W T M C M Ct e x t

Reference string

(a)

(b)

Coverage

Coverage

o f
Time-consuming fragment

a sequence <xi> of fragments arranged in their processing order.
The number of distinct fragments we can process using t
locate() calls is then expressed as the greatest index i such that
Σ i

j = 0f(xj) < t. It is clear that the strategy to maximize such i is to
sort fragments in their order of frequency.

Second, we can cover a wider range across the query.
Whereas only the front portion of the query can be processed in
sequential ordering, as mentioned above, frequency-aware
ordering is likely to select fragments with a higher variance in
their positions in the query. Consequently, more of the query
can be covered with a smaller number of fragments. An
example is shown in Fig. 3. Suppose we have a query
document identical to that shown in the figure. As illustrated in
Fig. 3(a), sequential ordering covers only the initial portion of
the query document. The frequency-based method, however,
covers a wider range using a smaller number of fragments than
the sequential ordering method. Consequently, when using the
frequency-based ordering method, the performance reaches its
peak significantly faster.

To formulate this, we define the coverage as the maximum
interval length that covers the positions of the matched
fragments, and assume that each fragment is processed during
one unit of time. Suppose we have a query Q of length |Q|, and
where its corresponding interval in the reference string has
the same length. For simplicity, the interval consists of |Q|/k
independent k-length fragments. We can then represent this
interval as a sequence of length |Q|/k, each element of which is
the frequency of the fragment in that position. Let Sfreq(t) be
the set of positions of t smallest values in the sequence. The
coverage at time t can then be computed as maxSfreq(t) –
minSfreq(t) + 1. Note that maxSfreq(t) – minSfreq(t) + 1 is at least t
because Sfreq(t) has t distinct positive integers. In the case of
sequential ordering, Sseq(t) is defined as {1, … , t} such that the
coverage at time t is always t. Therefore, frequency-aware
fragment ordering has a higher degree of coverage than
sequential ordering after processing the same number of
fragments.

As the third reason, which is more important, a high
fragment frequency is likely to deteriorate the performance
because such fragments produce a greater number of false
positives. In other words, infrequent fragments contribute the
most to the level of performance. Let us assume that the
reference string consists of randomly drawn fragments in
regions other than the actual similar regions considered; in
other words, false positive regions consist of independent
random fragments. Let p(x, y, d) be the probability that two
fragments x and y will occur within a given interval comprised
of d fragments. It is clear that if p(x, y, d) is higher, a higher
number of false positives are likely to be produced. Let f(x) be
the probability that fragment x will occur. The probability that
neither fragments x and y will occur at all in the interval is
(1– f(x) – f(y))d. The probability that no fragments x (or y) will
occur in the interval is (1 – f(x))d (or (1 – f(y))d). Based on the
inclusion-exclusion principle, the probability of either fragment
x or fragment y not occurring in the interval will be (1 – f(x))d +
(1 – f(y))d – (1 – f(x) – f(y))d. Hence, we have p(x, y, d) = 1 – (1
– f(x))d – (1 – f(y))d + (1 – f(x) – f(y))d. Because ∂p(x, y, d)/
∂f(x) = d(1 – f(x))d–1 – d(1 – f(x) – f(y))d–1 ≥ 0, a greater number
of false positives are likely to be produced as the fragment
frequency increases, which has lead us to the use of infrequent
fragments to reduce the number of false positive results.

2. Delayed Selection for Overlapping Fragments

When we use frequency-aware ordering, we must compute
count(P) for each fragment P to determine their processing order.
If the given time limit is overly short, such that only a small
number of fragments can be processed, the computation of the
number of occurrences of all fragments will be wasteful because
the majority of the fragments will be unprocessed. If we can
process only a portion of the fragments, it is better to select those
fragments that cover as much of the query as possible. The
simplest method to accomplish this is to avoid overlaps across
the selected fragments. This strategy is also supported by the
observation that overlapping fragments are also likely to appear
as overlapped on the reference string because of their locality.
Thus, if we have a limited capability to process fragments, it is
wasteful to process overlapping fragments because they will
occur simultaneously with a high probability.

To minimize the overlapping between the fragments being
processed, we divide the fragments into several groups where
the fragments do not overlap. We then consider a group index
for determining the processing order of the fragments instead
of simply breaking the ties randomly or based on their position.
More formally, we define the total order < f on the set of
extracted fragments as follows: x < f y if and only if occ(x) +
w group(x) < occ(y) + w group(y), where occ(x) is the number

524 Sung-Hwan Kim and Hwan-Gue Cho ETRI Journal, Volume 38, Number 3, June 2016
http://dx.doi.org/10.4218/etrij.16.0115.0594

of occurrences of x, group(x) is the group id of x, and w is an
integer parameter. If w = 0, we do not consider the groups, and
each group is likely to be processed more separately as w
increases. Note that if we want to insert any fragments from a
group into the priority queue, we must compute the number
of occurrences for all fragments within the group. After
computing the frequencies of the fragments in group i, we
place them into the priority queue using their keys, which are
their frequencies increased based on the group weight. The
computation for the next group, i + 1, will be delayed until the
smallest key in the priority queue exceeds w(i + 1), which is the
lower bound of the key that a fragment in group i + 1 can have.
We can also interpret w as the estimation of the cost required to
compute the frequencies of the fragments in the next group. It
is apparent that the sum of the length of the fragments in a
group cannot exceed the length of the query document because
they do not overlap. A length of time proportional to the query
length is needed to insert the next group into the priority queue.
Assuming that the cost of computing the frequency can be
measured by the number of total characters, we simply set w as
the length of the (preprocessed) query document.

We use a greedy method to assign the group id to the
fragments. First, scanning from left to right along the query, we
select any disjointed fragments. We then repeat this starting at a
position where the overlapping length of the fragments in the
previous groups and those in the current group can be
minimized. If we use fixed-length fragments, this can be
formulated using a bit representation. Suppose we are
extracting length-k fragments from the query document and k
is a power of 2. In the first phase, we can make group 0 with
the fragments starting at positions that are a multiple of k. For
group 1, we choose fragments starting at a position whose
remainder divided by k is k/2. In this manner, we minimize the
maximum length of the overlapping interval of a pair of
fragments selected from both group 0 and group 1. Similarly,
group 2 must choose position k/4 or 3 k/4 as the starting
position of the first fragment. We can make k groups by
repeating this process. We can represent the group id, ranging
from 0 to k–1, using a bit sequence of length lg k. We sort this
bit sequence in reverse lexicographical order. The group index
of the fragment starting at position j is the rank of the bit
representation of j, as previously defined. For example, if k = 8,
we require lg 8 = 3 bits to represent the group id, and the bit
sequences are sorted as 000, 100, 010, 110, 001, 101, 011, and
111. Accordingly, the starting positions of the first fragment of
each group will be 0, 4, 2, 6, 1, 5, 3, and 7, respectively.

3. Suffix Range Reuse

Even though we can process fragments more efficiently

through grouping, as discussed previously, it is necessary to
scan the entire query document whenever a group of fragments
is initiated. In computing these frequencies, the most costly
task is updating the suffix range on a Burrows–Wheeler
transformed text. In particular, if we use compressed bit vectors
to implement a rank() data structure, the cost for updating the
suffix ranges become much higher. In this case, we can reuse
the suffix range of the previously searched fragments instead of
computing the suffix range for each fragment all over again.

Computing the suffix range of similar strings has also been
addressed in the area of bioinformatics, and some short-read
mapping tools such as in [12] construct in advance a hash table
that contains the suffix ranges of all strings of a specific length.
Although this technique dramatically reduces the search time
and can be directly adopted, manipulating a hash table is not a
good idea for our situation. There are two main reasons for this.
First, the size of the alphabet is much larger than that of
biological sequences, which results in an excessively large hash
table. A large hash table involves not only an out-of-memory
problem, but also loading overhead. Second, the length of the
fragment should be fixed in the indexing time to benefit from
precomputing the frequencies.

We present a trie-based approach to address this problem.
When computing the suffix range for a fragment, we traverse
each trie whose nodes contain the suffix range for its
corresponding string. We start with the root node of the trie. We
traverse the trie to determine the reverse of the query fragment.
If we encounter a node that does not have a child node for the
current character, say in position i, we then compute the suffix
range for Q[i:|Q|]. Because we already have the suffix range for
Q[i + 1:|Q|], it takes only O(1) time. We then create a new child
node and save the suffix range into it. Actually, it also takes
O(1) to descend a node in the trie, but its constant factor is
much smaller than that when computing the suffix range again.
As a result, we can save a significant amount of computational
cost in practice, particularly when the rank() data structure is
very slow owing to its compression ratio. Moreover, this trie-
based method does not require a large amount of space; the trie
has only O(k|Q|) nodes in the worst case because there are
O(k|Q|) fragments for a given query document.

VI. Interval Aggregation

In this section, we propose different interval aggregation
methods for effectively computing the results from a mapping
profile. Because only a limited number of fragments are
processed, and these fragments have low frequencies, the
mapping profile has an extremely small number of matchings.
Note that our assumption is that fragments that are close to
each other in the query document are likely to be matched at

ETRI Journal, Volume 38, Number 3, June 2016 Sung-Hwan Kim and Hwan-Gue Cho 525
http://dx.doi.org/10.4218/etrij.16.0115.0594

close positions in the reference string. Fragments are likely to
be located more densely in similar regions, whereas most of the
fragments are located sparsely throughout the reference string.
However, the positions where the matchings are located are not
necessarily contiguous even in similar regions because the
number of fragments is insufficient, and the similar regions in
the reference string can be slightly different from the query. An
immediate result right after the string matching process is thus
a set of short matching segments; hence, we must merge close
intervals into a long interval to report the final results.

1. Simple Merging Method

We can simply merge two intervals that are closer than the
threshold distance d. That is, two matchings (pr

(1), pq
(1), l(1)) and

(pr
(2), pq

(2), l(2)) are merged if their corresponding intervals [pr
(1),

pr
(1) + l(1)], [pr

(2), pr
(2) + l(2)] are closer than d. Because we use

fixed-length fragments, we have l = l(1) = l(2). Then, without a
loss of generality, we can assume that pr

(1) < pr
(2). Now, we can

illustrate this as the merging of intervals [pr
(1), pr

(1) + l + d] and
[pr

(2), pr
(2) + l + d] into one long interval [pr

(1), pr
(2) + l + d] if they

are overlapped. After merging all of the overlapped intervals,
we discard intervals shorter than C to remove any accidental
matchings. A greater value of C can result in the filtering of
more false positives; however, correct answers may be
discarded.

2. Locality-Aware Merging Method

The simple merging method cannot resolve cases in which
two unrelated fragments are accidentally matched close to each
other in the reference string. For example, suppose there are
fragments that are more than tens of sentences apart from each
other; however, they are matched in the reference sting within a
single sentence. The simple merging method will merge these
intervals into one long interval; however, this is not reasonable
because they actually have nothing to do with each other. To
ensure the locality in the query, we consider not only the
distance in the reference string but also that in the query string.
Thus, we merge two matchings (pr

(1), pq
(1), l(1)) and (pr

(2), pq
(2),

l(2)) if both pairs of intervals [pr
(1), pr

(1) + l(1)], [pr
(2), pr

(2) + l(2)] and
[pq

(1), pq
(1) + l(1)], [pq

(2), pq
(2) + l(2)] are closer than threshold d.

Similar to the simple merging method, assuming l = l(1) = l(2), a
matching (pr

(1), pq
(1), l(1)) can be represented as an axis-parallel

rectangle (pr
(1), pq

(1), pr
(1) + l, pq

(1) + l), which is defined by the
bottom-left (pr

(1), pq
(1)) and top-right (pr

(1) + l, pq
(1) + l) points.

This can then be described geometrically as the merging of
extended rectangles (pr

(1), pq
(1), pr

(1) + l + d, pq
(1) + l + d) and (pr

(2),
pq

(2), pr
(2) + l + d, pq

(2) + l + d) if they are overlapped. The
merged rectangle is their minimum surrounding rectangle.
After merging the rectangles, we contract the resulting

rectangles using d. Finally, we discard those rectangles whose
side is shorter than C to reduce false positives.

Compared with the simple merging method, the locality-
aware merging method reduces the number of false positives in
a probabilistic manner. Suppose we use the simple merging
method, and that a fragment x occurs in position i in the
reference string. The occurrence probability of a false positive
merging from a fragment x and another fragment y will then be
the same as the probability that at least one y occurs within
distance d from x. We denote this probability as ρ. When we
use the locality-aware method, a matched fragment y should
also occur close to x in the query. If we have m number of
fragments y in the query, then the probability that no fragments
y will occur within the interval of 2d + 1 centered at the
position of fragment x can be roughly expressed as 1 – B(|Q| –
2d – 1, m)/B(|Q| – 1, m), where B(n, m) is a binomial
coefficient. Thus, the false positive probability can be estimated
as ρ(1 – B(|Q| – 2d – 1, m)/B(|Q| – 1, m)) < ρ, which tells us that
the false positive probability of the locality-aware merging
method is much smaller than that of the simple merging method.

VII. Experimental Evaluation

1. Experiment Setting

For our evaluation, we used the PAN 2013 dataset [13],
which has been utilized in plagiarism detection competitions,
The dataset consists of four subsets, each of which contains its
own type of plagiarism cases; among them, we used the
random obfuscation cases. This subset consists of 1,000 pairs
of suspicious documents and the source document. Suspicious
documents are produced by artificially plagiarizing a portion of
the source document. We also used the publicly available Pizza
& Chili English corpus [14]. We excerpted it into the proper
size and concatenated it with each of the source documents to
generate a reference document. All alphabet letters were
converted into lower case, and non-alphanumeric characters
were removed.

The experiments were conducted for three reasons. First, we
wanted to show that our method works well in the comparison
of document pairs. To demonstrate this, we compared our
method against a state-of-the-art text alignment method [2],
and measured the character-level F-score. Second, we also
hoped to show that our method is more robust to a large sized
document database. We also compared our method against a
winnowing-based near-duplicate document search method [15],
and evaluated them both based on their document-level
accuracy. Finally, we conducted experiments to demonstrate
the superiority of the newly proposed technique, which
improves the performance of a genomic read-mapping model

526 Sung-Hwan Kim and Hwan-Gue Cho ETRI Journal, Volume 38, Number 3, June 2016
http://dx.doi.org/10.4218/etrij.16.0115.0594

Table 1. Performance of one-to-one text alignment.

 Precision Recall F-score

Existing method [2] 0.810 0.834 0.822

Proposed method (f ≤ 1) 0.960 0.691 0.803

Proposed method (f ≤ 2) 0.909 0.759 0.827

Proposed method (f ≤ 3) 0.870 0.781 0.823

Table 2. Search performance for the most similar document.

 True False Accuracy

Existing method [18] 438 562 0.438

Existing method [18] (f ≤ 3) 504 496 0.504

Proposed method 614 386 0.614

based document search method.

2. Pairwise Comparison

We conducted text alignment experiments to demonstrate the
performance of a pairwise comparison. The dataset used has
1,000 pairs of documents, each of which consists of a
suspicious document and a source document. We attempted to
find similar regions in the source document for a suspicious
document given as a query. We measured the F-score using the
sum of the true positive, false positive, and false negative
intervals in the source document at the character level. Our
method used fragments having a frequency of less than or
equal to f in the first group as compared to a state-of-the-art text
alignment method [2]. For the parameters, we used k = 8 and
d = 128.

As described in Table 1, the experimental results indicate that
our method is competitive with the state-of-the-art method.
Note that the text alignment method focuses solely on a
pairwise comparison, and thus the expansion for a large
document set is not trivial, whereas our method is robust
regardless of the database size.

3. Searching in Large Document Set

To simulate a large volume document database, we
constructed a corpus with a size of 100 MB. The corpus size
after removing non-alphanumeric characters is about 80 M.
Because the corpus we used does not have a document
boundary, we split it into 22 K documents, each of which at a
length of about 3.6 K, which is the average length of the source
documents in the given dataset. In this experiment, we did not
aggregate the matching fragments. Instead, we counted the

number of fragments located in each document, and chose the
top document with the greatest number of matches. Similarly,
we generated a document signature according to [15] using the
parameters q = 4 and w = 146, counted the number of shared
signatures between the query and documents in the database,
and returned the top results. As shown in Table 2, our method
outperforms the existing winnowing-based method.

4. Performance Convergence

We also compared the proposed method against the methods
presented in [16] and [17]. For each pair of suspicious and
source documents in the dataset, we concatenated the source
document and a string of length 1 M excerpted from the corpus,
and then processed the suspicious document as a query. The
combinations of parameters used were k{8, 10, 12, 14, 16},
d{32, 64, 128, 256, 512}, where C was fixed at 100. We
measured the best F-score at every 0.5 ms during the search.
The results are shown in Fig. 4. As expected, the performance
of the method using all of the proposed strategies converged
the most quickly. The non-grouping method was the worst
during the first tens of milliseconds because it consumed too
much time in computing the frequencies of all fragments in the

Fig. 4. Convergence performance with respect to time. The
method using all of the proposed strategies outperformed
the other combinations.

Time (ms)
11 13 15 17 19

ALL
Nongrouping
Simple aggregation
Sequential ordering

1 3 5 7 9

0.00

1.00

0.20

0.40

0.60

0.80

F
-s

co
re

Fig. 5. Performance of naive and suffix range reuse method in
terms of the processing time (a) and number of rank() calls
(b).

Group

0

Naive

100

200

1 2 3 4 5 6 7 8

T
im

e
(m

s)
 Reuse

Group
1 2 3 4 5 6 7 8

0

100

200

R
an

k(
)

ca
ll

s

(a) (b)

Naive
Reuse

ETRI Journal, Volume 38, Number 3, June 2016 Sung-Hwan Kim and Hwan-Gue Cho 527
http://dx.doi.org/10.4218/etrij.16.0115.0594

initial phase. The simple aggregation method performed well
but slightly worse than the locality-aware aggregation method.

5. Suffix Range Reuse

We measured the processing time and number of calls of
function rank() to demonstrate the efficiency of a trie-based
reuse of the suffix range. For this experiment, we used an RRR
bit vector [18] with a block size of 7, as provided by the
Succinct Data Structure Library [19]. The experimental results
are shown in Fig. 5. The processing time and number of rank()
calls can be improved by up to 50% when we reuse the suffix
range, as proposed herein.

VIII. Conclusion

Searching for similar documents in an extensive database is
an important task in recent applications of information retrieval
and data management. This paper addressed the problem of
finding documents that are locally similar to a given query
document by borrowing the short-read mapping method from
the field of bioinformatics, in which the local similarity search
problem has been actively discussed. We also determined
specific issues arising in the text search problem. The main
contributions of the paper can be summarized as follows:

We proposed a framework for similar document searches.
The framework is flexible because we can designate the
parameters used for the appropriate target document
characteristics.

For the efficiency and effectiveness of the search process, we
proposed a frequency-based fragment ordering and fragment
grouping method. We also presented a trie-based suffix range
reuse method that improves the performance in terms of the
search time, particularly when slow compressed bit vectors are
used in the implementation of the full-text index.

Locality-aware interval aggregation methods were also
proposed, and were confirmed to be effective in improving the
search results by preventing accidental matches.

We conducted extensive experiments using various search
scenarios including a one-to-one text alignment and a search
from a large document set. The results showed that the
proposed method outperforms previous existing methods.

References

[1] Y. Yang et al., “Query by Document,” ACM Int. Conf. Web

Search Data Mining, Barcelona, Spain, Feb. 912, 2009, pp. 34
43.

[2] M.A. Sanchez-Perez, G. Sidorov, and A. Gelbukh, “A Winning

Approach to Text Alignment for Text Reuse Detection at PAN

2014,” Notebook PAN CLEF, Sheffield, UK, Sept. 1518, 2014.

[3] C. Trapnell and S.L. Salzberg, “How to Map Billions of Short

Reads onto Genomes,” Nature Biotechnology, vol. 27, 2009, pp.

455457.

[4] P. Ferragina and G. Manzini, “Opportunistic Data Structures with

Applications,” Ann. Symp. Foundations Computer Sci., Redondo

Beach, CA, USA, Nov. 1214, 2000, pp. 390398.

[5] M. Burrows and D.J. Wheeler, “A Block-Sorting Lossless Data

Compression Algorithm,” Technical Report 124, Digital

Equipment Corporation, 1994.

[6] U. Manber and G. Myers, “Suffix Arrays: A New Method for On-

line String Searches,” SIAM J. Comput., vol. 22, no. 5, Oct. 1993,

pp. 935948.

[7] H. Li and R. Durbin, “Fast and Accurate Short Read Alignment

with Burrows-Wheeler Transform,” Bioinformatics, vol. 25, no.

14, 2009, pp. 17541760.

[8] M. Potthast et al., “Overview of the 6th International Competition

on Plagiarism Detection,” Notebook PAN CLEF, Sheffield, UK,

Sept. 1518, 2014.

[9] K. Williams, H. Chen, and C. Giles, “Supervised Ranking for

Plagiarism Source Retrieval,” Notebook PAN CLEF, Sheffield,

UK, Sept. 1518, 2014.

[10] M.A. Sanchez-Perez, G. Sidorov, and A. Gelbukh, “A Winning

Approach to Text Alignment for Text Reuse Detection at PAN

2014,” Notebook PAN CLEF, Sheffield, UK, Sept. 1518, 2014.

[11] S.F. Altschul et al., “Basic Local Alignment Search Tool,” J.

Molecular Biology, vol. 215, no. 3, Oct. 1990, pp. 403410.

[12] R. Li et al., “SOAP2: An Improved Ultrafast Tool for Short Read

Alignment,” Bioinformatics, vol. 25, no. 15, Aug. 2009, pp.

19661967.

[13] PAN 2013, Accessed June 19, 2015. http://pan.webis.de

[14] P. Ferragina and G. Navarro, Pizza & Chili Corpus, Accessed

June 29, 2015. http://pizzachili.dcc.uchile.cl

[15] Y. Sun, J. Qin, and W. Wang, “Near Duplicate Text Detection

Using Frequency-Biased Signatures,” Web Inf. Syst. Eng., Int.

Conf., Nanjing, China, Oct. 1315, 2013, pp. 277291.

[16] C.S. Ock et al., “A Fast Searchong for Similar Text Using

Genomc Read Mapping Method,” IEEE Int. Conf. Comput. Sci.

Eng., Sydney, Australia, Dec. 35, 2013, pp. 219226.

[17] S.-H. Kim and H.-G. Cho, “A New Approach for Approximate

Text Search Using Genomic Short-Read Mapping Model,” ACM

Int. Conf. Ubiquitous Inf. Manag. Commun., Bali, Indonesia, Jan.

810, 2015.

[18] R. Raman, V. Raman, and S.S. Rao, “Succinct Indexable

Dictionaries with Applications to Encoding k-ary Trees and

Multisets,” ACM-SIAM Symp. Discrete Algorithms, San

Francisco, CA, USA, Jan. 68, 2002, pp.233242.

[19] S. Gog, Succinct Data Structure Library 2.0, Accessed Dec. 1,

2015. https://github.com/simongog/sdsl-lite

528 Sung-Hwan Kim and Hwan-Gue Cho ETRI Journal, Volume 38, Number 3, June 2016
http://dx.doi.org/10.4218/etrij.16.0115.0594

Sung-Hwan Kim received his BS and MS

degrees from Pusan National University, Rep.

of Korea. Since 2013, he has been a PhD

student at Pusan National University. His

research interests include string processing

algorithms and data visualization.

Hwan-Gue Cho received his BS degree from

Seoul National University, Rep. of Korea, and

his MS and PhD degrees from Korea Advanced

Institute of Science and Technology, Daejeon,

Rep. of Korea. Since 1990, he has been a

professor at Pusan National University, Rep. of

Korea. His research interests include computer

algorithms, bioinformatics, data mining, and computer graphics.

