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Recently, a product-matrix (PM) framework was 
proposed to construct optimal regenerating codes for 
homogeneous distributed storage systems (DSSs). In this 
paper, we propose an extended PM (EPM) framework for 
coding of heterogeneous DSSs having different repair 
bandwidths but identical storage capacities. Based on the 
EPM framework, an explicit construction of minimum 
remote-repair bandwidth regenerating (MRBR) codes is 
presented for a specific heterogeneous DSS, where two 
geographically different datacenters with associated 
storage nodes are deployed. The data reconstruction and 
regeneration properties of the MRBR code are proved 
strictly. For the purpose of demonstration, an example 
implementation of MRBR code is provided. The presented 
MRBR code is the first optimal strict-regenerating code 
for heterogeneous DSSs. In addition, our proposed EPM 
framework can be applied to homogeneous systems also. 
 

Keywords: Heterogeneous distributed storage, remote-
repair bandwidth, regenerating code, extended product-
matrix, strict-regenerating code. 

                                                               

Manuscript received May 15, 2015; revised Dec. 14, 2015; accepted Dec. 28, 2015. 
This work was supported by the Natural Science Foundation (NSF) of China (61471222) 

and the NSF of Shandong Province (ZR2015FM003). 
Jian Xu (corresponding author, jianxusdu@126.com), Yewen Cao (ycao@sdu.edu.cn), 

Deqiang Wang (wdq_sdu@sdu.edu.cn), Changlei Wu (wu_chlei@163.com), and Guang Yang 
(yangguang_1030@163.com) are with the School of Information Science and Engineering, 
Shandong University, Jinan, China. 

I. Introduction 

Cloud storage services can relieve the burden of storage 
resources and avoid huge expenditure on the construction of 
infrastructural facilities [1]. In a cloud storage system (CSS), a 
data file (the message) is encoded and stored in n distributed 
storage nodes. The storage capacity of each node is . In the 
process of data reconstruction, a data collector (DC) can 
reconstruct the original data file provided he or she has access 
to k of the n distributed storage nodes.  

1. Regenerating Code 

Data reliability is an important issue in CSSs. A self-
sustaining CSS must be able to regenerate (namely, repair) 
failed nodes. The most common method employed to repair 
failed nodes is that which seeks to replicate data in multiple 
storage nodes; it is used in many practical storage systems [2].  

As a generalization of replication, erasure coding can offer 
better storage efficiency by using maximum distance separable 
codes [2]. As reported in [3]–[6], for the same redundancy 
factor, erasure coding can obtain significantly higher reliability 
in comparison with replication. However, erasure coding 
requires more overhead in terms of the total repair bandwidth, 
 , (namely, the amount of data downloaded to repair a failed 
node) than replication [7]. A promising optional coding scheme 
for distributed storage systems (DSSs) named “regenerating 
coding” was introduced in [2]. 

Regenerating code is efficient in terms of both storage and 
repair bandwidth. Under the definition of regenerating code [2], 
data reconstruction can be achieved by connecting to any k of n 
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nodes. When a node fails, a regeneration process is conducted 
to repair the data stored in the failed node. Any d of the (n − 1) 
remaining nodes can be selected by the replacement node as 
helper nodes and ≤  symbols are downloaded from each. 
The total repair bandwidth,  = d, is much smaller than the 
message size, F. A regenerating code under the above setup  
is called strict-regenerating code (S-RC). The parameters 
involved must satisfy a bound given by [2] 

 
1

min , ( 1)
k

i

F d i 


   .           (1) 

An optimal tradeoff exists between storage and repair 
bandwidth. The two extremal points in this tradeoff are termed 
as the minimum storage regenerating (MSR) point and the 
minimum bandwidth regenerating (MBR) point. MSR and 
MBR correspond to the best storage efficiency and        
the minimum repair bandwidth, respectively. Explicit 
constructions of MSR and MBR codes can be found in [8]–
[11]. Specifically, optimal regenerating codes for homogeneous 
DSSs were constructed by using a product-matrix (PM) 
framework in [8]. These PM-based regenerating codes possess 
the property of striping of data, which results in a low 
complexity from an implementation standpoint. In [11], new 
encoding schemes for error-correcting MSR and MBR codes 
that generalize earlier results on error-correcting regenerating 
codes were proposed. Constructions for exact-regenerating 
codes between MSR and MBR points were given in [12].  

Data security is another important issue for CSSs. When a 
CSS consists of nodes widely spread across the Internet, some 
nodes may be not secure. In [13], the problem of securing 
DSSs against passive eavesdroppers that can observe a limited 
number of storage nodes was studied and a general upper 
bound on the secrecy capacity was derived. Information-
theoretically secure regenerating codes, which achieve an 
information-theoretic secrecy capacity, can be found in [14]. A 
link eavesdropping problem for remote DSSs, where data is 
stored in two geographically different data centers to increase 
its reliability, was studied in [1]. 

2. Heterogeneous DSSs 

Earlier researches focus on a homogeneous DSS model in 
which all nodes have the same node storage capacity, α, and 
repair bandwidth, . Studies on heterogeneous systems that 
contain nodes from different sources and with different 
characteristics have recently emerged and been developed. 
Examples include peer-to-peer (p2p) or hybrid (p2p-assisted) 
CSSs [15], [16], Internet caching systems for video-on-demand 
applications [17], [18], and caching systems in heterogeneous 
wireless networks [19].  

Motivated by the above heterogeneous applications, 
researches on heterogeneous DSSs are emerging. The capacity 
of heterogeneous DSSs with different storage sizes and repair 
bandwidths was studied in [20]. The work of [20] focuses on 
characterizing the upper and lower bounds of the capacity of a 
DSS. In [21], the fundamental tradeoff between system storage 
cost and system repair cost was investigated for heterogeneous 
DSSs with different storage and repair costs. Considering 
heterogeneous DSSs with dynamic repair bandwidth and 
dynamic storage capacity, the authors of [22] investigated the 
fundamental tradeoff between storage and repair cost with 
flexible reconstruction degree. Coding schemes for a DSS with 
one super-node (that is, the node that is the most reliable and 
having the largest storage capacity among all other nodes) were 
studied in [23]. For heterogeneous CSSs, Yu and others 
considered irregular fractional repetition codes to provide very 
low repair cost and less disk I/O access at the expense of higher 
storage overhead [24]. The authors of [25] and [26] studied the 
storage allocation problem of heterogeneous DSSs under a 
total storage budget constraint, where nodes may fail with 
different probabilities. 

Researches on regenerating codes for heterogeneous DSSs 
are relatively sparse. In [27], a two-rack model was designed to 
investigate the tradeoff between storage and repair bandwidth. 
It was shown that all the points on the tradeoff curve, including 
the MBR point, become feasible if the nodes in the rack   
with higher regenerating bandwidth are allowed to store      
more information. In [28], relax-regenerating code (R-RC) 
construction was proposed for heterogeneous DSSs with 
different repair bandwidths under a more relaxed setup. 
Provided that the total data downloaded exceeds a certain 
threshold, a DC (or a replacement node) can succeed in data 
reconstruction (or regeneration) irrespective of the number of 
nodes to which it connects [28]. However, the repair bandwidth 
of R-RC construction meets the cut-set bound only when the 
maximum flexibility of regeneration is allowed. So far, it is  
still challenging to construct S-RC for applications of 
heterogeneous DSSs. 

3. Related Terminology 

A. Repair Bandwidth 

The amount of data that a replacement node downloads from 
all d helper nodes during a repair process is defined as total 
repair bandwidth, . The amount of data that a replacement 
node downloads from helper node i during a repair process   
is called the repair bandwidth, ( ),i  of node i. The 
maximum and minimum values of , [1, ],i i n   are denoted 
by max and min, respectively. Note that in the heterogeneous 
system considered in this paper, different nodes have different 
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repair bandwidths, while the node storage capacities, i, of 
different nodes are the same; that is, i = . In addition, we 
focus on the case of single-node failure because it is the 
dominant failure case in DSSs [29]. 

B. Striping of Data 

The striping property [8] can be explained as follows. Given 
an optimal regenerating code with parameter set max{ , , },F   
a second optimal regenerating code with parameter set 

max{ , , }F    for any positive integer  can be obtained. 
In reality, a big file (message) of size F  symbols can be 
divided into  groups with F symbols per group. For each 
group, the max{ , , }F   code can be applied independently. 
In general, a code constructed for a smaller max through 
concatenation of codes will be of lesser complexity from a 
practical standpoint [8]. Such a process is referred to as striping 
of data. For these reasons, we design regenerating code for min 
= 1 in the present paper. 

4. Results Presented in This Paper 

In this paper, we consider a heterogeneous DSS model, 
where two geographically different datacenters are deployed 
and storage nodes are configured with different repair 
bandwidths but identical storage capacities. An extended 
product-matrix (EPM) framework is proposed to construct S-
RC for heterogeneous DSS applications. Applying the EPM 
framework to the heterogeneous DSS considered, we provide 
an explicit construction of minimum remote-repair bandwidth 
regenerating (MRBR) codes. The parameters of the MRBR 
codes can meet a cut-set bound. Strict mathematical proofs are 
provided for the data reconstruction and regeneration properties 
of our MRBR codes. An example for the MRBR code is also 
presented for the purposes of demonstration. 

II. System Model and MRBR Code 

1. System Model and Analysis 

The system model considered in this paper is based on the 
two-datacenter scenario introduced in [1]. The data are stored 
in two geographically different datacenters, named local 
storage datacenter (LSD) and remote storage datacenter (RSD). 
There are NL and NR storage nodes in the LSD and the RSD, 
respectively. The total number of storage nodes is given by 

 L Rn N N  .                  (2) 

In this model, a DC connects to any k nodes in the LSD 
through infinite-capacity links such that it can download all the 
data stored in the k nodes and reconstruct an original file. When 

a node in the LSD fails, inter-datacenter links (IDLs) between 
the LSD and the RSD are established for data repair. The 
replacement node for the failed node connects to LN   helper 
nodes from the LSD and RN   helper nodes from the RSD so 
as to regenerate the data stored in the failed node. The total 
number of helper nodes is given by 

L Rd N N   .                 (3) 

The replacement node in the LSD downloads L symbols from 
each helper node in the LSD and R symbols from each helper 
node in the RSD. As in [1], we assume that    

L R ( 1),m m                 (4) 

where m is an integer. Clearly, the system model considered is 
a heterogeneous CSS when m > 1 holds. In addition, the 
remote repair bandwidth, R, is defined as 

R R R .N                      (5) 

The communication between the LSD and the RSD over IDLs 
can be susceptible to eavesdropping. As in [1], we assume that 

 R RN N                     (6) 

and that an eavesdropper can obtain all the information of R 
sent from the RSD. Thus, R is a dominant factor affecting the 
security level of the CSS. So, it is necessary to minimize R 
such that the system security can be improved.  

2. MRBR Code 

For the considered system model, there is a fundamental 
tradeoff curve between  and R [1]. On the tradeoff curve, 
there exists an extremal point that corresponds to the minimum 
remote-repair bandwidth (R,min). This point is named MRBR 
point. An S-RC code becomes known as an MRBR code if it 
attains this point. Note that min = R and max = L. According 
to the striping of data, R = 1 is assumed in all MRBR codes 
hereafter. 

We denote an MRBR code over a finite field q  of size q 
as an R[ , , , , ]n k d m N   regenerating code with parameter set  
(, R, F). We assume that the parameters k and d are the 
minimum values that can always guarantee the data 
reconstruction and regeneration properties of an MRBR code. 
This assumption means that the ranges of d and RN   will   
be 1k d n    (see [8] for details) and R0 ,N n k    
respectively. There is an upper bound for the parameter RN   
because a DC needs to connect k nodes in the LSD for 
reconstruction. Thus, there are at most (n – k) storage nodes in 
the RSD. 

According to [1], the fundamental tradeoff curve between  
and R is subject to 
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 
1

L L R R
0

min , ( )
k

i

F N i N  




    .        (7) 

That is, the parameters of a regenerating code must satisfy (7). 
Here, we define 

 
1

C L L R R
0

min , ( )
k

i

F N i N  




            (8) 

as the capacity of R[ , , , , ]n k d m N   regenerating codes. The 
minimum storage, * ,  was achieved in [1] as 

R*

R R

/ [ (0), )

( ( ) ) / ( ) [ ( ), ( 1)),

F k f

F g i k i f i f i




 
 

     
  (9) 

where 

   R R( ) 2 / 2 2 ,f i FN i mk mi m k md mk m N         

(10) 

  R R( ) 2 2 2( 1) / 2g i i md mk m N mi m N       ,  (11) 

 R,min R R2 / 2 2FN k md mk m N      .     (12) 

The MRBR point corresponding to R,min can be achieved by  

  R
MRBR

R

R
R, MRBR

R

2 ( 2) ( 1) 2
,

2 2

2
,

2 2

k m m N mdF

k md mk m N

NF

k md mk m N





   
 

  


 
  

 (13) 

where MRBR and R, MRBR represent the storage capacity and the 
remote-repair bandwidth of each node, respectively. Note that 

R,MRBR R,min R R .N      The complete derivation of (13) 
can be found in Section 1 of the Appendix. 

Now, we show the optimality of all MRBR codes. One can 
find that an MRBR code satisfies the following two properties: 
▪ An MRBR code satisfying (13) achieves the cut-set bound 

of the tradeoff between R and  with equality. 
▪ Decreasing  or R will result in a new parameter set that 

violates the cut-set bound. According to the definition of 
optimal regenerating code [8], the MRBR code is optimal. 

III. EPM Framework 

1. Overview of PM Framework 

The PM framework was presented in [8] to construct 
regenerating codes. Under the PM framework, each codeword 
in a DSS can be described as follows: ,C ΨM  where Ψ  
is an encoding matrix of size (n × d), M is a message matrix of 
size (d × ), and C is a code matrix of size (n × ). Specifically, 
M contains the F message symbols in a possibly redundant 
fashion, and Ψ is designed in advance and independent of the 

message symbols. We denote the ith row of Ψ by iψ  and the 
ith row of C by ci; then, it is clear that ,i ic ψ M  1 .i n   
In fact, iψ  is the encoding vector of node i, and ci is the 
coded message vector stored in node i. All message symbols 
and coded symbols belong to a finite field q  of size q.  

The operations of data-reconstruction and regeneration 
proceed in the following way. 

Data-reconstruction. We denote a set of k nodes to which a 
DC connects as {1, ... , k}. The ith node in this set passes on 
the message vector iψ M  to the DC. Thus, from the k nodes, 
the DC obtains the product matrix DC ,Ψ M  where DCΨ  is a 
submatrix of Ψ consisting of rows corresponding to the k 
nodes. Based on the properties of Ψ and M, the original 
message can be recovered from DC .Ψ M The accurate 
procedure of recovering M is dependent on the particular 
construction. 

Regeneration. Assume that a node, f, fails and that a 
replacement node tries to regenerate the data stored in node f ; 
that is, .f fc ψ M  We denote an arbitrary subset {1, ... , d} 
of d helper nodes to which the replacement node connects. The 
jth helper node in the subset computes the inner product T

j fc u  
(namely, one symbol; here, T denotes transpose) and sends it to 
the replacement node. Note that fu is a row vector consisting 
of  components of fψ . Thus, from the d helper nodes, the 
replacement node obtains d symbols, which can be expressed 
as T

repair ,fΨ Mu  where repairΨ  is a submatrix of Ψ consisting 
of rows corresponding to the d helper nodes. From 

T
repair ,fΨ Mu  the placement node can exactly recover the data 

stored previously in the failed node f. Once again, the precise 
procedure depends on the specific constructions of Ψ and M. 

So far, it is clear that the PM framework is suitable for 
homogeneous DSSs in which all nodes have the same storage 
capacity  and the same repair bandwidth .  

In the following subsection, we propose an EPM framework 
for a heterogeneous system, where the repair bandwidth i  
may be different for different helper nodes while the node 
storage capacities i of all nodes are the same; namely, 

.i    

2. EPM Framework 

To highlight the difference between EPM and PM, a 
superscript letter “e” is adopted in notations. We denote 

 max , [1, ]iw i n   and / .z w  We set y to be an 
arbitrary integer. Then, under the EPM framework, each 
codeword in a DSS is given by 

    e e e ,C Ψ M                 (14) 

where the encoding matrix Ψe is of size (n × yw), the message 
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matrix Me is of size (yw × (zw = )), and the code matrix Ce is 
of size (n × ). As in the PM framework, e

iψ  stands for the 
ith row of Ψe and represents the encoding vector of node i, and 

e
ic  stands for the ith row of Ce and represents the coded 

message vector stored in node i. The encoding matrix Ψe is of 
the form 

 e e e e
1 2[ ],wΨ Ψ Ψ Ψ             (15) 

where each submatrix 
e , [1, ]i i wΨ  is of size (n × y). As will 

be shown in Section IV, specific requirements can be imposed 
on these w submatrices for particular code designs.  

Equivalently, the encoding matrix Ψe can also be expressed 
as 

e

1

,
w

j
j

 Ψ Φ                (16) 

where   

e

1

... ... ,n y n y n y n y
j j

j w j

   

 

 
 
  

Φ Ο Ο Ψ Ο Ο     (17)  

where n yΟ  is a null matrix of size (n × y).  

The message matrix Me is a block diagonal matrix given by 

e
1

e
2

e e
3

e

0

,

0

w

 
 
 
 
 
 
  

M

M

M M

M


        (18) 

where each submatrix e , [1, ]j j wM  is of size (y × z). These 

w submatrices contain F message symbols in a possibly 
redundant fashion. 

According to (15) and (18), Ce can be expressed as 

e e e e e e e e e
1 1 2 2 .w w    C Ψ M Ψ M Ψ M Ψ M     (19) 

From (19), the coded message vector stored by the ith node is 
given by 

e e e e e e e
1, 1 2, 2 , ,i i i w i w   c ψ M ψ M ψ M        (20) 

where e
,j iψ  represents the ith row of submatrix e ,jΨ  

[1, ].j w  Furthermore, (20) can be expressed as  

e e e
, ,

1 1

,
w w

i j i j i
j j 

  c c φ M              (21) 

where ,j iφ  represents the ith row of , [1, ]j j wΦ  and 
e e

, ,

1 1 e e 1 1
,

1

.... .... ,

j i j i

z z z z
j i j

j w j

   

 



 
 
  

c φ M

ο ο ψ M ο ο 
 (22) 

is the jth message vector component. Here, 1 zο  is a null 
vector of size (1 × z). Thus, from the message vector e ,ic  the 
ith node can easily achieve any message vector component 

e
,j ic [1, ].j w  This is termed as a decomposition property of 

our EPM framework, which is important for the following 
processes of data-reconstruction and regeneration.  

Data-reconstruction. We denote an arbitrary subset {1, ... , k} 
of k nodes to which a DC connects. The ith node in this subset 
passes on the message vector e

ic  to the DC. The 
decomposition property of our EPM framework makes it easy 
to obtain the w message vector components e

1, ,ic e
2, ,ic  ... , 

e
,w ic  from e.ic  Thus, from the k nodes, the DC obtains the 

product matrix e e
DC ,Ψ M  where e

DCΨ is a (kw × yw) matrix 
consisting of the kw rows 1,1 ,1 1, ,{ , ... , , ... , , ... , }w k w kφ φ φ φ . 
Based on the properties of Ψe and Me, the original message can 
be recovered from e e

DC .Ψ M   
Regeneration. Assume that the node f fails. Hence, a 

replacement node tries to regenerate the data stored in node   
f; that is, e e e .f fc ψ M  We denote an arbitrary subset 
{1, ... , d} of d helper nodes to which the replacement node 
connects. According to the decomposition property of our 
EPM framework, the helper node j in this subset can obtain  
j ( w ) message vector components e

1, jc , ... , e
,j jc  from 

e .jc    The helper node j calculates j inner products 
e e T e e T
1, ,( ) , ... , ( )

jj f j fc u c u  (namely, j symbols), where e
fu  is 

a row vector consisting of  components of e
fψ , and passes 

on these inner products to the replacement node. Thus, from 
the d helper nodes, the replacement node obtains 

1

d

j
j

d 


                    (23) 

symbols, which can be expressed as e e e T
repair ( ) ,fΨ M u  where 

e
repairΨ  is a ( )d yw  matrix consisting of the d  row 

11,1 ,1 1, ,{ , ... , , ... , , ... , }.
dd d φ φ φ φ  From e e e T

repair ( ) ,fΨ M u  
based on the properties of Ψe and Me, the placement node can 
exactly recover the data stored previously in the failed node f.  

EPM Framework versus PM Framework. Generally, the 
EPM framework is suitable for heterogeneous DSSs, where the 
repair bandwidths of storage nodes are different. When the 
repair bandwidths of all storage nodes are the same (namely, 

,i i   ), the DSS model considered turns out to be a 
homogeneous one. In this special case, we have w = 1, and the 
encoding, data-reconstruction, and regeneration under the EPM 
framework are identical to those under the PM framework. 
This means that the EPM framework can be applied to 
homogeneous systems also. 

IV. EPM-MRBR Code Construction 

In this section, we apply the EPM framework to construct a 
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class of MRBR codes with R 1  , named “EPM-MRBR 
code,” for our considered two-datacenter model. This 
construction is under the following conditions: 

L L

2,

/ 1/ 2,

/ 1/ 2.

m

k n

N N


 
  

            (24)    

An MRBR code must possess data-reconstruction and 
regeneration properties. For an MRBR code, the parameter  
corresponds to MRBR in (13). Thus, we can obtain the 
following: 

R

( 1) ,

2 ,

F k k

d N



  

  
             (25) 

( 1) ,

.

F k k

n
 

 
                (26) 

Derivations of (25) and (26) are provided in Section 2 of the 
Appendix. 

Based on the second and third conditions in (24), and (26), it 

can be observed that the values of parameters L, , ,n N F  are 

even numbers. According to (4) and the first condition in (24), 

we can determine that L R2 .   Thus, we have w = 2 in the 

present code with R 1.   
Based on (23), (3), (4), and the first condition in (24), it can 

be determined further that 

L L R R L R L R
1

2
d

j
j

d N N mN N N N  


             . (27) 

For the case w = 2 of the EPM framework, we let 

/ / 2y d w d    and / / 2.z w          (28) 

From (27), the third condition in (24), (6), and (2), it can be 
determined that 

.d n                      (29) 

It can be determined from (2), (29), and (6) that ,d  NR, and 

RN   are also even numbers. Thus, the parameter set of the 

MRBR code that will be constructed here is  

 R2 , 1, ( 1)n k d F k k       .       (30) 

Substituting w = 2 into (15), the encoding matrix Ψe of the 
MRBR code that will be constructed here can be obtained by 

 e e e
1 2[ , ].Ψ Ψ Ψ               (31) 

Assume that the first NL of n nodes are located in the LSD 

and the last NR nodes are located in the RSD. The matrix 
e e e

1 2[ , ]Ψ Ψ Ψ  is chosen such that the two (n × k) matrices 
e
1Ψ  and e

2Ψ  satisfy the following properties: 

▪ The last RN   rows are linearly independent with any LN   

rows of the first L L( )N N  rows (note that R RN N   as 

mentioned above). 
▪ Any k rows of the first NL (≥ k) rows are linearly independent. 

The above requirements can be met by choosing Ψe to be a 

Vandermonde matrix with elements chosen carefully, where 

the finite field q  is of size n or higher. Please refer to the 

choice of the encoding matrix Ψ of the PM framework in [8]. 

For example, we can choose Ψe to be a Vandermonde matrix, 

as follows: 

2 1

2 1e

2 1

1 1 1 1

1 2 2 2

1 3 3 3 ,

1

n

n

nn n n







 
 
 
 
 
 
  

Ψ





    


        (32) 

whereby this matrix is of full rank. Thus, the matrix Ψe implies 

that the two matrices e
1Ψ  and e

2Ψ  satisfy the listed 

requirements above. Note that all the elements of Ψe are over a 

finite field q  of size q.  
Substituting (28) into (18), the ( )d      message 

matrix Me of an MRBR code can be obtained. The matrix 
satisfies the property of symmetry and contains F = k(k + 1) 

message symbols from the message set   1
.

F

i i
u


 

The reconstruction and exact-regeneration properties of an 
MRBR code will be given by the following two theorems. 

Theorem 1 (EPM-MRBR Data-Reconstruction). The 

decomposition property of the EPM framework allows node  

i to achieve w = 2 message vector components e
1,ic  and e

2,ic  

from e.ic  Thus, the message matrix Me can be recovered by 

connecting to any k nodes in the LSD. 
Proof. In the case of w = 2 under the EPM framework, the DC 
achieves the product matrix e e

DCΨ M  from the k nodes in the 

LSD, where e
DCΨ  is a (2k × d  ) matrix consisting of the 2k 

rows 1,1 2,1 1, 2,{ , , ... , , }.k kφ φ φ φ  

According to the specific construction and properties of 
matrix Ψe, the ((2 ) )k d d    matrix e

DCΨ  is constructed 

to be of full rank; thus, it is invertible. Therefore, the DC can 
recover Me by multiplying the matrix e e

DCΨ M  on the left by 
e 1
DC( )Ψ .                                        ■ 

Theorem 2 (EPM-MRBR Exact-Regeneration). The exact-
regeneration of any failed node in the LSD can be achieved by 
downloading L 2   symbols from each of the helper nodes 
in the LSD and R 1   symbol from each of the helper nodes 
in the RSD.  
Proof. The replacement node of the failed node f connects to 
an arbitrary subset L R{1, ... , }N N   of L RN N d    

helper nodes. It is assumed that the helper node L, [1, ]i i N   
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is a node in the LSD and that the helper node 

L L R, [ 1, ]j j N N N      is a node in the RSD. According to 

the decomposition property of the EPM framework, the helper 
node j in this subset can achieve the two message vector 
components e

1, jc  and e
2, .jc  In the present construction, we 

choose the vector e
fu  equal to e .fψ  Thus, the helper node i 

from the LSD calculates two inner products; that is, e e T
1, ( )i fc ψ  

and e e T
2, ( )i fc ψ , L[1, ]i N  . The helper node j from the RSD 

randomly calculates one of two inner products; that is, either 
e e T
1, ( )j fc ψ  or e e T

2, ( ) ,j fc ψ  L L R[ 1, ]j N N N     , It is worth 

noting that, in RSD, there are R / 2N   helper nodes 

calculating e e T
1, ( )j fc ψ  and the other R / 2N   helper nodes 

calculating e e T
2, ( ) .j fc ψ  Then, the d helper nodes pass on the 

L R2N N d    inner product values to the replacement node; 

thus, the replacement node obtains d   symbols, which can be 

expressed as e e e T
repair ( ) ,fΨ M ψ  where e

repairΨ  is a ( )d d   

matrix consisting of the following d   rows: 1,1 2,1{ , , ... ,φ φ  

L L L L L R L R1, 2, 1, 1 2, 2 1, 1 2,, , , , ... , , }.N N N N N N N N           φ φ φ φ φ φ           

According to the specific construction and properties of 
matrix Ψe, the matrix e

repairΨ  is constructed to be of full rank; 

thus, it is invertible. This allows the replacement node to 
recover the e e T( )fM ψ by multiplying the matrix 

e e e T
repair ( )fΨ M ψ  on the left by e 1

repair( ) .Ψ  Since Me is 

symmetric, we have e e T T e e( ( ) ) ;f fM ψ ψ M  this is the data 

stored previously in the failed node f.                   ■ 
Example Implementation of EPM-MRBR Code. We 

construct an EPM-MRBR code whose parameters are 
configured as follows: R6, 3, 4, 2, 2n k d m N      . 

It is clear that 6,d    F = 12, and L 2N   . Let us 

choose q = 7; that is, we are operating over 7 . The matrices 
e
1M  and e

2M  are filled up by the twelve message symbols 

from the message set  12

1iu  given by 

1 2 3

e
1 2 4 5

3 5 6

,

u u u

u u u

u u u

 
   
  

M
7 8 9

e
2 8 10 11

9 11 12

.

u u u

u u u

u u u

 
   
  

M  (33) 

Choose Ψe to be the (6 × 6) Vandermonde matrix over 7  

given by 

e

1   1   1  1    1   1 

1   2   4   1   2    4 

1   3   2   6   4   5 
.

1   4   2   1   4    2 

1   5   4   6   2    3

1   6   1   6   1    6 

 
 
 
 

  
 
 
 
  

Ψ           (34) 

 

Fig. 1. Example for EMP-MRBR code construction: notions 

1 6, ... ,N N  represent nodes 1, ... ,6 . On failure of node 

1, replacement node downloads L 2   symbols from 

each of nodes 2, 3 (in LSD) and downloads R 1 

symbol from each of nodes 5, 6 (in RSD), under which 
node 1 is exactly regenerated. 

e e
1 1N ψ M

e e
2 2N ψ M

e e
3 3N ψ M

e e
4 4N ψ M

LSD

RSD

e e
5 5N ψ M

e e
6 6N ψ M

e e T
1,2 1( )φ M ψ

e e T
2,2 1( )φ M ψ

e e T
1,3 1( )φ M ψ

e e T
2,3 1( )φ M ψ

e e T
1,5 1( )φ M ψ

e e T
2,6 1( )φ M ψ

e 1
repair( )Ψ

1

1,2

2,2

1,3

2,3

1,5

2,6

=


 
 
 
 
 
 
 
 
 
 
 

φ

φ

φ

φ

φ

φ

Replacement 
for N1  

e e
1ψ M  

 
 

In Fig. 1, the exact-regeneration of failed node “1” is 

demonstrated, where 
e
1 [1 1 1 1 1 1]ψ  and the 6   

symbols stored in node 1 are e e e
1 1 .c ψ M  Helper nodes 2 

and 3 pass on inner products  e T
1, 11 11 1 1iφ M  and  

 e T
2, 11 11 1 1iφ M  (for i = 2, 3), and helper nodes 5 and    

6 pass on inner products  e T
1,5 11 11 1 1φ M  and 

 e T
2,6 11 11 1 1φ M , to the replacement node to generate node 

1. Then, the replacement node will multiply the six symbols it 

receives with e 1
repair( ) ,Ψ  where e

repairΨ  is a (6 × 6) matrix 

consisting of the six rows 1,2 2,2 1,3 2,3 1,5 2,6{ , , , , , },φ φ φ φ φ φ  as 

explained in Theorem 2. 

V. Analysis of EPM Framework and MRBR Code 

1. Implementation Complexity of EPM-MRBR Code 

Under the EPM framework, the MRBR code possesses 
several desirable properties, such as linearity, small field size, 
striping, and low complexity, as discussed below. 

A. Linearity and Field Size 

The MRBR code is linear on a finite field q ; that is, the 
stored symbol is a linear combination of the source symbols 
from the finite field q . As mentioned previously, any field of 
size n or higher suffices in our MRBR code. By shrewdly 
choosing the matrices that meet the required properties, it may 
be possible to reduce the field size further. 

B. Striping 

In the presence of striping, the whole message is divided into 
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stripes of small sizes corresponding to R 1  . Since each 
stripe is of minimum size, the complexities of encoding, 
reconstruction, and regeneration operations are lowered 
considerably; further, the buffer sizes required at DCs and 
replacement nodes are also quite small. In practice, the stripes 
can be processed in parallel and efficiently by using 
GPU/FPGA/multi-core processors. 

2. EPM Framework for Multiple Datacenters 

The EPM framework can be applied to the coding of the 
two-datacenter scenario, as shown in Section IV. Applying the 
EPM framework to multi-datacenter scenarios depends on 
specific system constructions. For the purpose of clarity, a 
three-datacenter scenario is provided as example in Section 3 
of the Appendix. 

VI. Conclusion 

In this paper, an EPM framework — a generalization of    
a previous PM framework — is proposed for general 
heterogeneous DSSs with different repair bandwidths but 
identical storage capacities. A feature of the EPM framework is 
that different amounts of repair data can be downloaded from 
different nodes. This feature leads to several desirable 
properties, such as the ability to take full advantage of different 
bandwidth resources.  

We apply the EPM framework to a specific heterogeneous 
DSS, where data are distributed and stored on two datacenters. 
Then, an explicit construction of MRBR codes is provided for 
the case of m = 2, k/n = 1/2 and L L/ 1/2N N  . Strict 
mathematical proofs have been provided to show the 
reconstruction and regeneration properties of our MRBR code. 
An example implementation of the MRBR code is presented 
also. This MRBR code is the first optimal S-RC for 
heterogeneous DSSs with different repair bandwidths, where 
the storage nodes are located in two geographically different 
datacenters. As a kind of S-RC, our MRBR code possesses 
several desirable advantages, such as linearity, small field size, 
and striping. Thus, it can be implemented with low complexity 
in practice. Our results also prove that the MRBR point on the 
storage and remote-repair bandwidth tradeoff is achievable 
under the additional constraint of exact-regeneration and 
specific conditions of system parameters. In future work, we 
plan to investigate deterministic designs of MRBR code for 
arbitrary parameter values.  

Appendix  

1. Derivation of (13) 

According to (12), it can be obtained that 

 R,MRBR R,min R R2 / 2 2FN k md mk m N        . (1.1) 

According to (10), we have 

 R R R,MRBR(0) 2 / 2 2 2 2f FN k md mk m N       . (1.2) 

At the MRBR point, we have *
MRBR .   According to 

(1.2), (9) can be rewritten as  

 
R R ,MRBR

*
MRBR R,MRBR| ( ) / ( )F g i k i       ,  (1.3) 

where R,MRBR [ ( ), ( 1)).f i f i    When i = k – 1, it can be 

obtained from (10) that 

 R R R,MRBR( 1) 2 / 2 2 .f k FN k md mk m N        (1.4)  

Consequently, (1.3) can be rewritten as 

   MRBR R,MRBR( 1) / ( 1)F g k k k      .   (1.5) 

Substituting (11) and (1.1) into (1.5), we can obtain 

    R

MRBR
R

2 2 1 2
.

2 2

k m m N mdF

k md mk m N


      
  

  (1.6) 

Thus, (13) follows from (1.1) and (1.6).  

 2. Deriving Processes of (25) and (26) 

According to the first condition in (24), we can rewrite (13) as 

    R R2 / 2 1F N d k d k N        ,     (2.1) 

 R,MRBR R R/ 2 1FN k d k N      .      (2.2) 

Combining (5) and (2.2) with R 1,   we can obtain 

 R R R R/ 2 1FN k d k N N       .      (2.3) 

Then, we can obtain the following: 

 R2 1F k d k N     .           (2.4) 

Substituting (2.4) into (2.1), we have 

R2d N   .               (2.5) 

Let message symbols F satisfy the capacity as shown in (8). 
Then, replacing FC with F in (8), we have 

  

  

   

1

L L R R
0

1

R R
0

1

R
0

min ,

min ,2

2 2 1 ,

k

i

k

i

k

i

F N i N

d N i N

d N i k k

  

















   

    

     







        (2.6) 

where the second equality in (2.6) follows from (3), (4), and the 
first condition in (24); moreover, the third and fourth equalities 
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in (2.6) follow from (2.5). Then, (25) follows from (2.5) and 
(2.6). 

From (3), (2.5) can be rewritten as  

 L R R L R2 N N N N N n         ,      (2.7) 

where the second equality in (2.7) follows from (6) and the 
third condition in (24); moreover, the third equality in (2.7) 
follows from (2). Substituting (2.7) into (2.6) under the second 
condition in (24), we have 

  1F k k  .               (2.8) 

Then, (26) follows from (2.7) and (2.8). 

3. EPM Framework for Three-Datacenter Scenario 

Consider a three-datacenter scenario where data are 
distributed and stored on three geographically different 
datacenters. There are NL storage nodes in a local storage 
datacenter (LSD), NR1 nodes in a remote storage datacenter 
(RSD-1), and NR2 nodes in a different remote storage 
datacenter (RSD-2). The total number of storage nodes is given 
by 

L R1 R 2n N N N   .              (3.1) 

The original file F is encoded and stored in all of LSD, RSD-1, 
and RSD-2. A DC connects to any k nodes in the LSD; thus, it 
can download all the data stored in the k nodes and reconstruct 
the original file F. Inter-datacenter links (IDLs) between the 
LSD and RSD-1/RSD-2 are established for data repair when a 
node in the LSD fails. To regenerate the data stored previously 
in the failed node, a replacement node in the LSD connects to d 
helper nodes with LN   helper nodes from the LSD, R1N   
helper nodes from RSD-1, and R 2N   helper nodes from RSD-
2; that is,  

L R1 R2d N N N     .             (3.2) 

The replacement node downloads L , R1,  and R 2  

symbols from each of the helper nodes in the LSD, RSD-1, 

and RSD-2, respectively. Further, it is assumed that          

L 1 R1 R 2 2 R1 1 2and , 1 and 1m m m m       , (3.3) 

where, m1 and m2 are integers. In addition, the total remote 
repair bandwidth R  is defined as 

R R1 R1 R 2 R2N N     ,             (3.4) 

which represents the total amount of data that a replacement 
node in the LSD downloads from all remote helper nodes in 
RSD-1 and RSD-2. Since the data of R  are transmitted over 
the Internet, the communication between the LSD and RSD-
1/RSD-2 can be susceptible to eavesdropping. Without loss of 

generality, it is assumed that 

1 23 and 2m m  .             (3.5) 

According to the striping of data, we construct codes with 

R1 1.   Then, we have R 2 2   and L 3.   According 
to the definition of w (that is,  max , [1, ] ),iw i n   we 
have the case w = 3 here. 

The EPM framework can be applied to the above three-
datacenter scenario. According to the decomposition property 
of our EPM framework, the ith node can obtain w = 3 message 
vector components e e e

1, 2, 3,, ,i i ic c c  from the message vector e
ic .  

The reconstruction and regeneration of the three-datacenter 
scenario are obviously the case of w = 3 under the EPM 
framework. 

References 

[1] Y.J. Chen, C.H. Liao, and L.C. Wang, “An Eavesdropping 

Prevention Problem when Repairing Network Coded Data from 

Remote Distributed Storage,” Global Commun. Conf., Atlanta, 

GA, USA, Dec. 9–13, 2013, pp. 2711–2716. 

[2] A.G. Dimakis et al., “Network Coding for Distributed Storage 

Systems,” IEEE Trans. Inf. Theory, vol. 56, no. 9, Sept. 2010, pp. 

4539–4551. 

[3] R. Bhagwan et al., “Total Recall: System Support for Automated 

Availability Management,” Symp. Networked Syst. Des. 

Implementation, San Francisco, CA, USA, Mar. 29–31, 2004, pp. 
337–350. 

[4] F. Dabek et al., “Designing a DHT for Low Latency and High 

Throughput,” Symp. Networked Syst. Des. Implementation, San 

Francisco, CA, USA, Mar. 29–31, 2004, pp. 85–98.  

[5] S. Rhea et al., “Pond: The OceanStore Prototype,” USENIX Conf. 

File Storage Technol., San Francisco, CA, USA, Mar. 31–Apr. 2, 

2003, pp. 1–14. 

[6] H. Weatherspoon and J.D. Kubiatowicz, “Erasure Coding vs. 

Replication: A Quantitative Comparison,” in Peer-to-Peer Syst.: 

1st Int. Workshop, IPTPS 2002 Cambridge, MA, USA, Mar. 7–8, 

2002, Revised Papers, Heidelberg, Germany: Springer, 2002, pp. 

328–337. 

[7] R. Rodrigues and B. Liskov, “High Availability in DHTs: Erasure 

Coding vs. Replication,” in Peer-to-Peer Syst. IV: Int. Workshop, 

Ithaca, NY, USA, Feb. 24–25, 2005, Revised Sel. Papers, 

Heidelberg, Germany: Springer, 2005, pp. 226–239. 

[8] K.V. Rashmi, N.B. Shah, and P.V. Kumar, “Optimal Exact- 

Regenerating Codes for the MSR and MBR Points via a Product-

Matrix Construction,” IEEE Trans. Inf. Theory, vol. 57, no. 8, 

Aug. 2011, pp. 5227–5239. 

[9] K.V. Rashmi et al., “Explicit Construction of Optimal Exact 

Regenerating Codes for Distributed Storage,” Ann. Allerton Conf. 
Commun., Contr., Comput., Monticello, IL, USA, Sept. 30–Oct. 



538   Jian Xu et al. ETRI Journal, Volume 38, Number 3, June 2016 
http://dx.doi.org/10.4218/etrij.16.0115.0412 

2, 2009, pp. 1243–1249. 

[10] O. Olmez and A. Ramamoorthy, “Repairable Replication-Based 

Storage Systems Using Resolvable Designs,” Ann. Allerton Conf. 

Commun., Contr., Comput., Monticello, IL, USA, Oct. 1–5, 2012, 

pp. 1174–1181.  

[11] Y.S. Han et al., “Update-Efficient Error-Correcting Product-

Matrix Codes,” IEEE Trans. Commun., vol. 63, no. 6, June 2015, 

pp. 1925–1938. 

[12] T. Ernvall, “Codes between MBR and MSR Points with Exact 

Repair Property,” IEEE Trans. Inf. Theory, vol. 60, no. 11, Nov. 

2014, pp. 6993–7005. 

[13] S. Pawar, S. El Rouayheb, and K. Ramchandran, “On Secure 

Distributed Data Storage under Repair Dynamics,” IEEE Int. 

Symp. Inf. Theory, Austin, TX, USA, July 13, 2010, pp. 2543–

2547. 

[14] N.B. Shah, K. Rashmi, and P.V. Kumar, “Information-

Theoretically Secure Regenerating Codes for Distributed 

Storage,” IEEE Global Telecommun. Conf., Houston, TX, USA, 

Dec. 5–9, 2011, pp. 1–5. 

[15] J. Kubiatowicz et al., “OceanStore: An Architecture for Global-

Scale Persistent Storage,” Int. Conf. Architectural Support 

Programming Languages Operaing Syst., Cambridge, MA, USA, 

Nov. 12–15, 2000, pp. 190–201. 

[16] A. Ha, P2P Startup Space Monkey Raises 2.25 m Led by Google 

Ventures and Venture 51, Aol TechCrunch, July 11, 2012, 

Accessed Feb. 25, 2015. http://techcrunch.com/2012/07/11/ 

space-monkey-seed-round 

[17] H. Zhang et al., “A Distributed Multichannel Demand-Adaptive 

P2P VoD System with Optimized Caching and Neighbor-

Selection,” Proc. SPIE, San Diego, CA, USA, Aug. 22–24, 2011, 

pp. 81350X-1–81350X-19. 

[18] S. Pawar et al., “Codes for a Distributed Caching Based Video-

on-Demand System,” Conf. Record Asilomar Conf. Signals, Syst., 

Comput., Pacific Grove, CA, USA, Nov. 6–9, 2011, pp. 1783–

1787. 

[19] N. Golrezaei, A.G. Dimakis, and A.F. Molisch, “Wireless Device-

to-Device Communications with Distributed Caching,” IEEE Int. 

Symp. Inf. Theory Proc., Cambridge, MA, USA, July 1–6, 2012, 

pp. 2781–2785. 

[20] T. Ernvall et al., “Capacity and Security of Heterogeneous 

Distributed Storage Systems,” IEEE J. Sel. Areas Commun., vol. 

31, no. 12, Dec. 2013, pp. 2701–2709. 

[21] Q. Yu, K.W. Shum, and C.W. Sung, “Tradeoff between Storage 

Cost and Repair Cost in Heterogeneous Distributed Storage 

Systems,” Trans. Emerg. Telecommun. Technol., vol. 26, no. 10, 

Oct. 2015, pp. 1201–1211. 

[22] K.G. Benerjee and M.K. Gupta, “Tradeoff for Heterogeneous 

Distributed Storage Systems between Storage and Repair Cost.” 

Preprint, submitted Mar. 8, 2015. http://arxiv.org/abs/1503. 

02276v1  

[23] V.T. Van, C. Yuen, and J. Li, “Non-homogeneous Distributed 

Storage Systems,” Ann. Allerton Conf. Commun., Contr., 

Comput., Monticello, IL, USA, Oct. 1–5, 2012, pp, 1133–1140. 

[24] Q. Yu, C.W. Sung, and T.H. Chan, “Irregular Fractional 

Repetition Code Optimization for Heterogeneous Cloud 

Storage,” IEEE J. Sel. Areas Commun., vol. 32, no. 5, May 2014, 

pp. 1048–1060. 

[25] D. Leong, A.G. Dimakis, and T. Ho, “Distributed Storage 

Allocations,” IEEE Trans. Inf. Theory, vol. 58, no. 7, July 2012, 

pp. 4733–4752. 

[26] V. Ntranos, G. Caire, and A.G. Dimakis, “Allocations for 

Heterogenous Distributed Storage,” IEEE Int. Symp. Inf. Theory 

Proc., Cambridge, MA, USA, July 1–6, 2012, pp. 2761–2765. 

[27] J. Pernas et al., “Non-homogeneous Two-Rack Model for 

Distributed Storage Systems,” IEEE Int. Symp. Inf. Theory Proc., 

Istanbul, Turkey, July 7–2, 2013, pp. 1237–1241. 

[28] N.B. Shah, K.V. Rashmi, and P.V. Kumar, “A Flexible Class of 

Regenerating Codes for Distributed Storage,” IEEE Int. Symp. Inf. 

Theory Proc., Austin, TX, USA, July 13–18, 2010, pp. 1943–

1947. 

[29] C. Huang et al., “Erasure Coding in Windows Azure Storage.” 

USENIX Ann. Tech. Conf., Boston, MA, USA, June 13–15, 2012, 

pp. 82–96. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



ETRI Journal, Volume 38, Number 3, June 2016 Jian Xu et al.   539 
http://dx.doi.org/10.4218/etrij.16.0115.0412 

  

 

 

Jian Xu received her BS degree in electronic 

information engineering from Shandong 

University (SDU), Jinan, China, in 2011. She is 

currently pursuing her PhD in communication 

and information systems at SDU. Her research 

interests include distributed storage/regenerating 

codes and cloud storage system security.  

  

Yewen Cao received his BS degree in 

communications, MS degree in electronic 

engineering, and PhD degree in communication 

and electronic systems from the Chengdu 

Institute of Information Technology China, 

School of Electrical Science and Technology, 

Peking University, Beijing, China, in 1986, 

1989, and 1995, respectively. Since 1999, he has been a professor of 

communications at Shandong University, Jinan, China. He was a 

research fellow at the National University of Singapore (Sept. 2000 to 

Aug. 2002), and a post-doctoral research fellow at both the University 

of Bradford, UK (Sept. 2002 to Sept. 2003), and the University of 

Glamorgan, Pontypridd, UK (Oct. 2003 to Sept. 2005). His research 

interests include communication theory (modulations and coding), 

techniques in 3G, 4G, and 5G mobile communication systems, and 

mobile IP network computing. He has been either an author or a co-

author of over 70 papers in academic journals (international or 

Chinese) and high-profile international conferences held by the IEEE 

organization. He is the owner of over 15 patents. 

 

Deqiang Wang received his BS degree in radio 

technology and his MS degree in signal 

processing from Shandong University (SDU), 

Jinan, China, in 1990 and 1995, respectively. 

He then went on to receive his PhD degree in 

communication and information systems  

from Beijing University of Posts and 

Telecommunications, China, in 2005. Since 1995, he has been with the 

faculty of the School of Information Science and Engineering, SDU, 

where he is currently a full professor. His research interests include 

ultra-wideband communications, multicarrier communications, and 

adaptive signal processing for wireless communications. 

  

  

  

  

  

 

 

 

 

  

Changlei Wu received his BS degree in 

electronic information engineering from 

Southeast University, Nanjing, China, in 1998 

and his MS degree in communication and 

information systems from the Beijing Institute 

of Technology, China, in 2005. He is currently a 

PhD student with the School of Information 

Science and Engineering, Shandong University, Jinan, China. From 

1998 to 2001, he worked for Shandong CVIC software engineering Co. 

Ltd., Jinan, China. Since 2005, he has been with the School of 

Electrical Engineering and Automation, Qilu University of Technology, 

Jinan, China. His research interests include wireless communications, 

network information theory, and interference networks. 

  

Guang Yang received her MS degree in signal 

and information processing from Shandong 

University (SDU) of Science and Technology, 

Jinan, China, in 2013. She is currently pursuing 

her PhD degree in communication and 

information systems at SDU, Jinan, China. Her 

current research interests include non-

cooperative and cooperative game theory–based resource allocation 

interference management in small-cell networks.  

 

 

 
 
 
 
 

 


