DOI QR코드

DOI QR Code

A Comparative Analysis between Photogrammetric and Auto Tracking Total Station Techniques for Determining UAV Positions

무인항공기의 위치 결정을 위한 사진 측량 기법과 오토 트래킹 토탈스테이션 기법의 비교 분석

  • Kim, Won Jin (Dept. of Civil and Environmental Engineering, Myongji University) ;
  • Kim, Chang Jae (Myongji University) ;
  • Cho, Yeon Ju (Dept. of Civil and Environmental Engineering, Myongji University) ;
  • Kim, Ji Sun (Dept. of Civil and Environmental Engineering, Myongji University) ;
  • Kim, Hee Jeong (Dept. of Civil and Environmental Engineering, Myongji University) ;
  • Lee, Dong Hoon (Dept. of Civil and Environmental Engineering, Myongji University) ;
  • Lee, On Yu (Dept. of Civil and Environmental Engineering, Myongji University) ;
  • Meng, Ju Pil (Dept. of Civil and Environmental Engineering, Myongji University)
  • Received : 2017.11.28
  • Accepted : 2017.12.27
  • Published : 2017.12.31

Abstract

GPS (Global Positioning System) receiver among various sensors mounted on UAV (Unmanned Aerial Vehicle) helps to perform various functions such as hovering flight and waypoint flight based on GPS signals. GPS receiver can be used in an environment where GPS signals are smoothly received. However, recently, the use of UAV has been diversifying into various fields such as facility monitoring, delivery service and leisure as UAV's application field has been expended. For this reason, GPS signals may be interrupted by UAV's flight in a shadow area where the GPS signal is limited. Multipath can also include various noises in the signal, while flying in dense areas such as high-rise buildings. In this study, we used analytical photogrammetry and auto tracking total station technique for 3D positioning of UAV. The analytical photogrammetry is based on the bundle adjustment using the collinearity equations, which is the geometric principle of the center projection. The auto tracking total station technique is based on the principle of tracking the 360 degree prism target in units of seconds or less. In both techniques, the target used for positioning the UAV is mounted on top of the UAV and there is a geometric separation in the x, y and z directions between the targets. Data were acquired at different speeds of 0.86m/s, 1.5m/s and 2.4m/s to verify the flight speed of the UAV. Accuracy was evaluated by geometric separation of the target. As a result, there was an error from 1mm to 12.9cm in the x and y directions of the UAV flight. In the z direction with relatively small movement, approximately 7cm error occurred regardless of the flight speed.

무인항공기 (UAV, Unmanned Aerial Vehicle)에 탑재되는 다양한 센서들 중에서 GPS (Global Positioning System) 수신기는 GPS 신호를 기반으로 정지비행 (hovering flight), 경로비행 (waypoint flight) 등 다양한 임무의 수행을 돕는다. GPS신호가 원활하게 수신되는 환경에서는 GPS 수신기를 활용할 수 있지만, 최근에 무인항공기의 활용을 시설물 모니터링, 배송, 레저 등 다양한 분야로 용도가 확대하면서 무인항공기의 비행 장소가 다양해지고 있다. 이러한 원인으로 무인항공기가 GPS 신호의 제약을 받는 음영지역이나 고층 빌딩이 밀집한 지역 등을 비행하면서 신호가 단절되거나 멀티패스로 인해 신호 에 다양한 잡음이 포함될 수 있다. 이에 본 연구에서는 무인항공기의 3차원 위치 결정을 위하여 해석 사진 측량 기법과 오토트래킹 토탈스테이션 기법을 이용하였다. 해석 사진 측량 기법으로는 중심투영의 기하학적 원리인 공선조건식 (collinearity equation)을 이용한 광속조정법을 기반으로 하였으며, 오토 트래킹 토탈스테이션 기법은 360도 프리즘 타깃을 초단위 이하로 추적하는 원리를 기반으로 하였다. 두 가지 기법에서 무인항공기의 위치 결정을 위해 사용된 타깃은 무인항공기 상단에 각각 탑재하였으며, 타깃간에는 x, y, z방향으로 기하학적 이격이 존재한다. 무인항공기의 비행 속도에 따른 결과 확인을 위해 0.86m/s, 1.5m/s, 2.4m/s로 속도를 달리하여 데이터를 취득하였으며, 타깃의 기하학적 이격을 통해 정확도평가를 하였다. 그 결과 무인항공기의 이동 경로인 x, y 방향으로는 최소 1mm에서 최대 12.9cm까지 오차가 발생하였고 비교적 이동이 적은 z 방향으로는 비행 속도와 무관하게 동일하게 7cm 오차가 발생하였다.

Keywords

References

  1. Ahrens, S., Levine, D., Andrews, G., and How, J.P. (2009), Vision-based guidance and control of a hovering vehicle in unknown, GPS-denied environments. IEEE International Conference on Robotics and Automation 2009, 12-17 May, Kobe, Japan, pp. 2643-2648.
  2. Habib, A.F., Morgan, M., and Lee, Y.R. (2002), Bundle adjustment with self-calibration using straight lines, The Photogrammetric Record, Vol. 17, No. 100, pp. 635-650. https://doi.org/10.1111/0031-868X.00211
  3. Habib, A.F., Lay, J.C., Jarvis, A., Griffiths, S., and Gugolj, D. (2007), Medium-format digital cameras: a study into their calibration, stability analysis, and integration with high resolution satellite imagery, CRSS/ASPRS 2007 Specialty Conference-Safety, Security, and the Environment Through Remote Sensing, 23 Oct - 1 Nov, Ottawa, Ontario, Canada, pp. 12-18.
  4. Kohanbash, D. (2011), Plowing for Rover Control on Extreme Slopes, Master's thesis, Carnegie Mellon University, Pittsburgh, Pennsylvania, USA, 28p.
  5. Mustafah, Y.M., Azman, A.W., and Akbar, F. (2012), Indoor UAV positioning using stereo vision sensor, IRIS 2012, 4-6 Sep., Kuching, Malaysia, pp. 575-579.
  6. Yoo, C.S. and Ahn, L.K. (2003), Low cost GPS/INS sensor fusion system for UAV navigation. Digital Avionics Systems Conference, 12-16 Oct., Indianapolis, USA, pp. 8.A.1-1-8.A.1.1-9.
  7. Yoo, T.W. (2016), High Precision Drone Path Control Using Real Time Location System Based on UWB Communication, Master's thesis, Hanyang University, Seoul, Korea, 53p. (in korean with English abstract)