DOI QR코드

DOI QR Code

Performance Analysis of the Propulsion System for the Combined Rotorcraft

복합형 로터항공기의 동력장치 성능해석 연구

  • Jo, Hana (Aerospace Engineering Department, Chonbuk National University) ;
  • Choi, Seongman (Aerospace Engineering Department, Chonbuk National University) ;
  • Park, Kyungsu (Agency for Defense Development) ;
  • Yang, Gyaebyung (Agency for Defense Development)
  • Received : 2017.06.02
  • Accepted : 2017.07.22
  • Published : 2017.12.01

Abstract

Performance analysis of the turboshaft engines for combined rotorcraft was executed. A tip jet and a ducted fan aircraft were selected for combined rotorcraft application. Gasturb 12 software was used for turboshaft engine performance analysis. In the results, maximum required power for the tip jet engine is about 1,600 hp class and maximum required power for the ducted fan engine is about 1,000 hp class at the required aircraft mission. This is due to the additional power of the auxiliary compressor to get a bleed air mass flow rate for the tip jet operation. At the same time, fuel consumption of the tip jet aircraft is 2.8 times larger than ducted fan case. Therefore ducted fan type aircraft is more efficient than tip jet aircraft in terms of fuel economy.

복합형 로터항공기의 터보샤프트 엔진에 대한 성능해석을 수행하였다. 복합형 로터항공기의 개념으로 팁제트 방식과 덕티드팬 방식의 형태를 이용하였다. 터보샤프트엔진에 대한 성능해석은 Gasturb 12 소프트웨어를 이용하여 수행하였다. 팁제트 방식의 항공기는 주어진 임무조건에서 최대출력 약 1,600 hp 대가 요구되며, 덕티드팬은 설계점에서 약 1,000 hp 대의 출력이 요구된다. 이것은 팁제트의 경우 제자리비행 시 부가적인 보조압축기 구동이 필요하며, 동력장치에 높은 출력을 요구하고 있기 때문인 것으로 파악된다. 또한 연료소모량의 경우 팁제트 방식이 덕티드팬에 비해 약 2.8배정도 소모되어 연료 효율 측면에서 덕티드팬 방식의 항공기가 보다 우수한 특성이 있음을 알 수 있다.

Keywords

References

  1. Chen, Z.J., Chung, Y.K. and Lee, J.W., "The Concept of Compound Aircraft and the Development Trend and Future Propects," The Korean Society for Aeronautical and Space Sciences 2015 Spring Conference, Jeju, Korea, pp. 497-500, Nov. 2015.
  2. Winchester, J., The World's Worst Aircraft, Barnes & Noble, New York, N.Y., U.S.A., 2005.
  3. Charnov, Bruce, H., The Fairey Rotodyne : An Idea Whose Time Has Come - Again, Praeger, Santa Barbara, C.A., U.S.A., 2003.
  4. Harris, F.D., "An Overview of Autogyros and the McDonnell XV-1 Convertiplane," NASA CR-2003-212799, 2003.
  5. Jo, H.N., Choi, S.M., Bak, K.S. and Yang, K.B., "Engine Cycle Analysis of the Combined Rotorcraft," The Korean Society of Propulsion Engineers 2016 Fall Conference, Kangwon-do, Korea, pp. 329-333, Dec. 2016.
  6. George, J. and Faehan, G., "The Emperor UAV," 31th Annual American Helicopter Society Student Design, pp. 1-20 , 2014.
  7. Dennis, R.J., Tony, L. and Jay, M., "American X-Vehicles : An Inventory," Monographs in Aerospace History, No. 31, pp. 29, 2003.
  8. Harding, S., U.S Army Aircraft Since 1947, Schiffer, Atglen, P.A., U.S.A., 2006.
  9. "Gasturb 12 Manual," World Wide Web location http://www.gasturb.de, 2012.
  10. Choi, S.M., Myong, R.S. and Kim, W.C., "Conceptual Study of an Exhaust Nozzle of an Afterburning Turbofan Engine," Journal of the Korean Society of Propulsion Engineers, Vol. 18, No. 3, pp. 62-69, 2014. https://doi.org/10.6108/KSPE.2014.18.3.062
  11. Kurzke, J., "Model Based Gas Turbine Parameter Corrections," Proceeding of 2003 ASME Turbo Expo, Atlanta, G.A., U.S.A., GT2003-38234, Jun. 2003.
  12. Kurzke, J., "Modeling the Thrust Management of Commercial Airliners," International Symposium on Air Breathing Engine 2013, Busan, Korea, ISABE-2013-1430, Sep. 2013.
  13. Liberatore, E.K., "Cold-Cycle Pressure-Jet Helicopter," Vertiflite, Vol. 37, No. 6, pp. 82-94, 1991.