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Abstract  The generalized Hough transform(GHough) can be used effectively for detecting and extracting an 
arbitrary-shaped 2-D model in an input image. However, the main drawbacks of the GHough are both heavy 
computation and an excessive storage requirement. Thus, most of the researches so far have focused on 
reducing both the time and space requirement of the GHough. But it is still not clear how well their improved 
algorithms will perform under various noise in an input image. Thus, this paper proposes a new framework 
that can measure the performance of the GHough quantitatively. For this purpose, we view the GHough as 
a detector in signal detection theory and the ROC curve will be used to specify the performance of the 
GHough. Finally, we show that we can evaluate the GHough under various noise conditions in an input image.
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Operating Characteristic

요  약  일반화된 허프변환은 임의의 형태의 2차원 모델을 입력영상에서 탐지 및 추출하는데 사용되어지는 효과적인 

방법이다. 그러나 일반화된 허프변환의 단점으로 실행시간이 오래 걸린다는 것과 과도한 메모리 사용을 들 수 있다. 

그래서 현재까지의 대부분의 연구는 일반화된 허프변환의 실행시간과 메모리 사용량을 줄이는데 집중되어왔다. 그

러나 실행시간과 메모리 사용을 줄여서 개선된 알고리즘이 입력 영상에 존재하는 노이즈를 고려할 경우 어떤 성능을 

제공하는가는 여전히 불분명하다. 그러므로 본 논문은 일반화된 허프변환의 성능 평가를 위한 새로운 프레임워크를 

제안한다. 이를 위해 일반화된 허프변환을 신호탐지 이론의 탐지기로 간주하며 ROC 커브를 사용해서 일반화된 허프

변환의 성능을 정의한다. 마지막으로 입력 영상에서의 노이즈를 고려한 정량적인 성능 평가가 가능함을 보인다.

키워드 : 허프변환, 일반화된 허프변환, 모양 추출, 물체 인식, 반응자 작용 특성
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1. Introduction

With increased computer speed and advanced 

technology in artificial intelligence, the image 

recognition is gaining momentum again. The image 

recognition technology has evolved over time, and 

many studies are being done in such area as motion 

detection, biometric recognition, and object tracking 

[1-5]. For those high level technology  to be successful, 

the Hough transform(HT) is a low level technique that 

can be used at the preprocessing stage of those 

algorithms. The HT is mainly used to detect such 

parametric curves as straight lines, circles, and 
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ellipses[6]. Ballard proposed the generalized Hough 

transform(GHough) that can detect an arbitrarily scaled 

and rotated model[7]. The classical survey by 

Illingworth and Kittler and the recent survey by 

Mukhopadhyay and Chaudhuri discuss the variants and 

extensions of both HT and the GHough[8,9]. The 

GHough is an efficient method when the rotation and 

scale parameter of a given model is known in advance. 

However, the GHough requires both heavy computation 

and an excessive storage of 4-dimensional accumulator 

array due to the enumeration scheme used in the 

algorithm. Thus, most of the researches so far have 

been focused on improving the time and storage 

requirement of the GHough. A randomized generalized 

Hough transform was proposed to reduce the execution 

time of the GHough, Multiple points with their 

geometric constraints were used to reduce the 

parameter space from 4-D to 2-D[10-12]. Even though 

those approaches have been successful in improving 

both the time and storage requirement of the GHough, 

it is not still clear how well their proposed algorithms 

will perform under various noise that can exist in an 

input image. Thus, this paper propose a framework that 

allows for measuring the performance of the GHough. 

This can be done by viewing the GHough as a detector 

in signal detection theory[13]. This paper consists of 

the following : (1) We first introduce the theory of 

hypothesis testing (2) Two important conditional 

probability functions of the cell counts in the parameter 

space of the GHough will be derived (3) The 

ROC(Receiver Operating Characteristic) curve will be 

used to specify the performance of the GHough under 

various noise conditions.

2. Generalized Hough Transform(GHough)

The GHough works in 2 phases : model encoding 

and detection. For the encoding of a given shape, the 

GHough selects an arbitrary reference point      

inside the model and stores the displacement vector   

into the R-table using a gradient angle   at each   

as an index. Fig. 1 shows the model encoding scheme 

of the GHough. In the second phase of the GHough, 

voting is done into a 2-dimensional accumulator array 

. That is, for each edge pixel   in an input image, 

the edge gradient   is computed and used to look up 

the R-table. For each      value stored there, the 

location of the potential reference point      is 

computed using the following equation :

      ,           (1)

and the     is incremented. Once all the edge 

pixels in an input image are processed, the accumulator 

array   is searched to find local maxima which is 

considered to be the model found. In order to adapt to 

variations in scale   and rotation   of the model, the 

above equation (1) can be modified as

      ,        (2)

and the accumulator array   needs to become 

4-dimensional.

Fig. 1. Model Encoding Scheme of the GHough

3. Hypothesis Testing

To develop an evaluation method for the GHough, 

we briefly introduce the hypothesis testing. Let us 

imagine that we measure a single quantity   and 

choose a classification, based on the outcome of the 



Performance Evaluation of the Generalized Hough Transform

145

measurement of  , of one of two possible hypotheses 

  and   . Then, the outcome of the measurement   

is a random variable with density functions   and 

 , respectively. Then,   can fall into two regions 

≤ and    , such that the hypothesis 

  is chosen when   lies in region   and the 

hypothesis   is chosen otherwise. Fig. 2 shows the 

two regions.

Fig. 2. Probability density functions  and conditioned 

under hypothesis  and , respectively

Regardless of what regions we select for   and   

with a threshold  , we can always consider the 

following quantities :

 


            (3)

 
 



            (4)

 


            (5)

 
  



            (6)

The quantities (4) and (6) are called the “probability 

of false alarm"(), and the ”probability of detection"

(), respectively. A specific threshold   determines 

both   and   of a detector.

 

4. Receiver Operating Characteristic(ROC)

The Receiver Operating Characteristic(ROC) curve 

is a plot of   versus   for varying threshold 

selected[14]. Fig. 3 shows a typical Receiver Operating 

Characteristic (ROC) curve for the distribution shown 

in Fig. 2.  What the curve tells us is that, if we set the 

threshold such that the   is equal to 0.1, the detection 

rate() we can achieve is 0.7. So, for varying 

threshold selected, which is implicit in the curve, we 

can measure the performance of a detector by plotting 

the probability of detection for varying levels of false 

alarm probability.

Fig. 3. A sample ROC curve that shows the relationship 

between  and 

5. Conditional Probability Functions

In order to obtain the probabilities(  and  ) for 

the evaluation of the GHough, we need two conditional 

probability functions : a probability function of a cell 

count when an instance of an object exists in an image

() and a probability function of a cell count when no 

instance of an object exists(). These conditional 

probability functions were derived and used to set the 

scientific threshold for the GHough considering both 

Type I and Type II error[15]. Here, we recap the 

important steps for the derivation of   and   and 

extend the work to obtain   and   for a complete 

evaluation of the GHough using the ROC curves.

5.1 Spreading Effect in Parameter Space

In this section, we are interested in finding the 

effects due to the uncertainties in measuring image 

features in a given image. Suppose an image contains 
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an instance of the model which is rotated by   and 

scaled by  . If the image were ideal with no noise, then 

it would have a point   with gradient angle  , which 

is a correct instance of the   model point   with a 

gradient angle  . Thus, the GHough would vote into 

a point in 2-dimensional translation space   

corresponding to a rotation   and a scale  . This point 

  in   is given as 

                    (7)

Thus, the R-table is indexed using the angle    

and the displacement vector  ’s are retrieved and each 

 ’s needs to be rotated by    and scaled by   to 

handle the rotation and scale appropriately.

Fig. 4. A set of translations due to measurement errors

However, since an image cannot be ideal, the 

observed gradient angle 
  and the observed location 

   will have deviation by   and   , respectively. 

That is,


  ≤  ,   and          (8)

  
 ≤              (9)

Considering both positional and angular error, the 

GHough should vote into a region in the parameter 

space   . This region is shown in Fig. 4, and is given 

by  

  


  

≤  ≤
   (10)

As we can see, this region is related to  the length 

of the   displacement vector    and the amount of 

positional and angular uncertainty(  and ).  The 

region corresponding to an arbitrarily shaped model is 

difficult to obtain.  However, we can get the worst case 

area of spread from the circle whose radius is   in Fig. 

5. Note that the distance between   and   is equal to .

Fig. 5. The region of spread for an arbitrary model

Since the   is given as      

        

 ∥∥  



the worst case area of spread is

  



∥∥   

  


    (11)

Where   is the length of the longest displacement 

vector in the model.

Since the votes into the parameter tend to spread 

into a region instead of a point in the parameter space, 

we must sum all the votes cast into a moving circle 

with radius .  Thus, at the peak detection stage, we 

assume that the GHough will find a maximum sum of 

cells inside the moving circle of radius   to get the 

local maxima.

Even though we use the moving circle of radius   

at the peak detection stage of the GHough,   can vote 

into the moving circle if the gradient angles in the 

model and an image match. That is, the    image 

point can vote  only if the angle 
  matches with 
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   in the R-table.  However, since 

≤               (12)

the indexing into the R-table will not always occur. 

In order to compute the probability that    image point 

casts a vote into , let us assume that  ≤ . 

That is, the quantization size   of a gradient angle is 

sufficiently large to handle the possible angular error.  

Then, there are 3 cases(Events) to consider as shown 

in Fig. 6. 

Fig. 6. Non-intersecting sub-intervals I, II, and III of the 

R-Table bin

Thus, we define the following events :

  :   lies in the interval I,

  :   lies in the interval II, and

  :   lies in the interval III.

Also, if we let    be the event “Indexing occurs.” 

Then, the probability that the    image point casts a 

vote is given by

 


 (13)

Note that   depends on exactly where   

lies in the interval II Depending on the value of   in 

Fig. 6, there are two cases;

1.   lies close to the end point of the interval I in 

which case the probability that an indexing occurs 

is close to 1

2.   lies close to the end point of quantization 

interval   in which case the probability that an 

indexing occurs is close 1/2. Thus, by averaging, 

the probability   that an 
  image point 

casts a vote into the area   is given as :

 ≈




 


 


 ≥ 

         (14)

Thus, the probability that   model points votes into 

the moving circle is

 ⌊×⌋  ⌊×⌋  
(15)

Where ,   are the number of model points, a number 

of image points(Edges) and   is the degree of 

occlusion(≤ ≤ ). These are the votes cast by  

real instances of ⌊×⌋model points in a given 

image.

Also, since there are   displacement vectors stored 

in the R-Table, whose size is⌊⌋,  a number of 

votes cast into the moving circle on the average is 

given by

  ⌊⌋


⌊×⌋   (16)

Thus, the probability that   non-model points cast 

a vote into the moving circle is 

 

        
      

(17)

 Where  ×


                        

Here, we assume an image size is ×  unit-square 

and   and   are also assumed to be independent, 

can be obtained as :

  ⊗          (18)

Where ⊗  is the convolution operator[16]. For even 
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moderate values of   and , the computation of both 

  and   becomes cumbersome, so we 

approximate them using the Poisson approximation : 

≈



  and  ≈





Where  ⌊×⌋  and
         . 

Thus, 

≈




⊗




         (19)

The   can also be obtained by setting     in 

  (i.e., no object exists in an image), 

and is given as

 

      
   

which we approximate as

≈
    




          (20)

Given   and , we can evaluate the performance 

of the GHough under varying conditions using the ROC 

curves.

6. Performance Evaluation of the 

GHough

We plot the ROC curves for the GHough to see how 

it performs by varying the number of edge pixels  , 

the amount of uncertainty in measuring edge position

(), edge gradient direction(), and the degree of 

occlusion of the model  . For the convenience of this 

evaluation, we set the quantization size   of the 

R-table to 5 degrees and  assumed the model consists 

of    points and the maximum length of the 

displacement vector in the model was set to 0.25.

(1) Varying Number of Image Features : 

We evaluated the GHough by varying the number of 

image features(Edges) from 1,000 to 4,000 points in 

steps of 1,000. Fig. 7 (a) through (d) show both   and 

  when   is 1000, 2000, 3000, and 4000, respectively. 

When   is 1000,   and   are well separated. 

However, as   increases, we can see that the 

overlapping interval of both   and   increases so that  

the false alarm probability also increases. Fig. 8(a) is a 

plot that shows the probability of false alarm () 

versus various thresholds for varying number of edge 

points(). As we can see, for a given threshold, the   

increases as   increases. When   is 1,000, setting a 

threshold such that the   is equal to 0.1 allows a   

of 0.99. However, when   is equal to 4,000, the same 

threshold allows only a detection rate of 0.95. Fig. 8(b) 

shows the ROC curves for varying .

(a)

(b)

(c)
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(d)

Fig. 7. (a), (b), (c) and (d) show  and  when  is 

1,000, 2,000, 3,000, 4,000 points, respectively

(a)

(b)                       

Fig. 8. (a) shows the false alarm probability for various 

threshold when  varies (b) shows the ROC 

curves when  is 1,000, 2,000, 3,000, 4,000 

points, respectively

(2) Varying Degree of Positional Uncertainty : 

Fig. 9(a) shows the ROC curves as a function of 

varying positional uncertainty . With the false alarm 

probability of 0.1, the GHough can only maintain the 

detection probability of 0.98, but as the positional 

uncertainty increases, the detection probability falls 

down up to 0.93.

(3) Varying Degree of Angular uncertainty :

Fig. 9(b) shows the ROC curves as a function of 

varying degree of angular uncertainty(). As we can 

see, the performance of the GHough degrades more 

rapidly compare to the case of positional uncertainty   

in Fig. 9(a). With the false alarm probability of 0.1, the 

GHough can only maintain the detection probability of 

0.77 when there is angular uncertainty of 4 degrees.

(4) Varying Degree of Occlusion :

Fig. 9(c) shows the ROC curves as a function of 

varying degree of occlusion(). In this case, the 

GHough performs better compare to the case of 

positional uncertainty   , but the detection probability 

decreases below 0.9, which is very poor if the half of 

the model is occluded in a given image(  = 0.5).

 

(a)

 

(b) 

(c)

Fig. 9. (a), (b) and (c) show the ROC curves for varying 

positional uncertainty , varying angular 

uncertainty  and varying degree of occlusion 

, respectively
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7. Conclusion

In this paper, we proposed a framework for the 

evaluation of the GHough by viewing it as a detector 

in signal detection theory. We derived the two 

conditional probability functions(  and ) of the 

peak(Cell counts) in the accumulator array of the 

GHough. Those functions were expressed by 

incorporating the uncertainties in measuring the 

position and the gradient angle of an edge, the number 

of edges, and the degree of occlusion of the model. 

Finally, both the false alarm probability(), and  the 

detection probability() were obtained to specify the 

Receiver Operating Characteristic(ROC) of the GHough 

under various noise level. Our proposed evaluation 

framework can also be used by other GHough variants 

to specify the performance quantitatively.
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